Instructor: Serge Richard

Linear algebra II

NI	ame	
LN	ame	

Quiz I

Exercise 1 Complete the following sentence:

A map $F: V \to W$ between two sets V and W is injective if...

Exercise 2 Let $L: V \to V$ be a linear map on a real vector space V. Let \mathcal{L} be the matrix associated with L with respect to a basis $\{V_1, \ldots, V_n\}$ of V, and let \mathcal{L}' be the matrix associated with L with respect to another basis $\{V'_1, \ldots, V'_n\}$ of V. If \mathcal{L} is an invertible matrix, is \mathcal{L}' always/sometimes/never an invertible matrix? Justify very briefly your answer.

Exercise 3 Let $L_{\mathcal{A}}: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear map defined on any $X \in \mathbb{R}^3$ by $L_{\mathcal{A}}(X) = \mathcal{A}X$, with $\mathcal{A} := \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 1 & 1 & 2 \end{pmatrix}$. Without doing any computation, answer the following questions:

(ii) What is the dimension of the kernel of LA, and why?

Exercise 4 Let F, G be arbitrary linear maps from a vector space into itself. Is F o G equal to G o F?

If F is invertible, is $F^2 = F \circ F$ invertible, and if so what is its inverse?

Yes, F² is invertible, with
$$(F^2)^{-1} = (F \circ F)^{-1} = F^{-1} \circ F^{-1}$$

= $(F^{-1})^2$.