
Chapter 2

Matrices and linear equations

In this chapter we introduce the notion of matrices and provide an algorithm for solving
linear equations.

2.1 Matrices

In this section we introduce the matrices and some of their properties.

Definition 2.1.1. For any m,n ∈ N we set

A ≡ (aij) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


with aij ∈ R and call it a m × n matrix. m corresponds to the number of rows while
n corresponds to the number of columns. The number aij is called the ij-entry or the
ij-component of the matrix A. The set of all m× n matrices is denoted by Mmn(R)1.

Remark 2.1.2. (i) M11(R) is identified with R,

(ii) (a1 a2 . . . an) ≡ (a11 a12 . . . a1n) ∈ M1n(R) while

( a1
a2
...
am

)
≡

( a11
a21
...

am1

)
∈ Mm1(R).

Elements of M1n(R) are called row vectors while elements of Mm1(R) are called
column vectors.

(iii) If m = n one speaks about square matrices and sets Mn(R) for Mnn(R).

(iv) The matrix

(
0 0 ... 0
0 0 ... 0
...
...
...

...
0 0 ... 0

)
is called the 0-matrix, simply denoted by O.

1The symbol R is written because each entry aij belongs to R. Note that one can consider more
general matrices, as we shall see later on with complex numbers.
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26 CHAPTER 2. MATRICES AND LINEAR EQUATIONS

In the sequel, we shall tacitly use the following notation:

A ≡ (aij) =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 , B ≡ (bij) =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

 ,

and

C ≡ (cij) =


c11 c12 . . . c1n
c21 c22 . . . c2n
...

...
. . .

...
cm1 cm2 . . . cmn

 .

The set Mmn(R) can be endowed with two operations, namely:

Definition 2.1.3. For any A,B ∈ Mmn(R) and for any λ ∈ R we define the addition
of A and B by

A+ B =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn


and the multiplication of A by the scalar λ:

λA =


λa11 λa12 . . . λa1n
λa21 λa22 . . . λa2n
...

...
. . .

...
λam1 λam2 . . . λamn

 .

Remark 2.1.4. (i) Only matrices of the same size can be added, namely A + B is
well defined if and only if A ∈ Mmn(R) and B ∈ Mmn(R).

(ii) The above rules can be rewritten with the more convenient notations

(aij) + (bij) = (aij + bij) and λ(aij) = (λaij) .

It is now easily observed that A + O = O + A = A. In addition, one has −A =
−1A = (−aij) and A−A = A + (−A) = O. Some other properties are stated below,
and their proofs are left as a free exercise.

Properties 2.1.5. If A,B, C ∈ Mmn(R) and λ, µ ∈ R then one has

(i) A+ B = B +A, (commutativity)

(ii) (A+ B) + C = A+ (B + C), (associativity)
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(iii) λ(A+ B) = λA+ λB, (distributivity)

(iv) (λ+ µ)A = λA+ µA,

(v) (λµ)A = λ(µA).

Note that the above properties are very similar to the one already mentioned for
vectors in Properties 1.1.4. These similarities will be emphasized in the following chap-
ter.

Let us add one more operation on matrices, namely the transpose of a matrix.

Definition 2.1.6. For any A = (aij) ∈ Mmn(R), one defines tA ≡ (taij) ∈ Mnm(R) the
transpose of A by the relation

taij := aji .

In other words, taking the transpose of a matrix consists in changing rows into columns
and vice versa.

We also define a product for matrices:

Definition 2.1.7. For A ∈ Mmn(R) and for B ∈ Mnp(R) one defines the product of A
and B by C := AB ∈ Mmp(R) with

cik =
n∑

j=1

aijbjk .

Examples 2.1.8. 1.1 2
3 4
5 6


︸ ︷︷ ︸
∈M32(R)

(
7
8

)
︸︷︷︸

∈M21(R)

=

1 · 7 + 2 · 8
3 · 7 + 4 · 8
5 · 7 + 6 · 8

 =

23
53
83


︸ ︷︷ ︸
∈M31(R)

2.

(
a1 a2 . . . an

)︸ ︷︷ ︸
∈M1n(R)


b1
b2
...
bn


︸ ︷︷ ︸
∈Mn1(R)

= a1b1 + a2b2 + · · ·+ anbn ∈ M11(R)

3. 
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


︸ ︷︷ ︸

∈Mnn(R)


x1

x2
...
xn


︸ ︷︷ ︸
∈Mn1(R)

=


y1
y2
...
yn


︸ ︷︷ ︸
∈Mn1(R)

with yi =
∑n

j=1 aijxj.
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Remark 2.1.9. (i) If A ∈ Mmn(R) and B ∈ Mpq(R), then the product AB can be
defined if and only if n = p, in which case AB ∈ Mmq(R).

(ii) If A,B ∈ Mn(R), then AB and BA can be defined and belong to Mn(R). However,
in general it is not true that AB = BA, most of the time AB ̸= BA.

Let us now state some important properties of this newly defined product.

Properties 2.1.10. (i) For any A ∈ Mmn(R), B, C ∈ Mnp(R) and λ ∈ R one has

(a) A(B + C) = AB +AC,
(b) (λA)B = λ(AB) = A(λB).

(ii) If A ∈ Mmn(R), B ∈ Mnp(R) and C ∈ Mpq(R) one has

(AB)C = A(BC).

(iii) If A ∈ Mmn(R) and B ∈ Mnp(R) one also has

t(AB) = tB tA.

These properties will be proved in Exercise 2.2. Recall now that for the addition,
the matrix O has the property A + O = A = O + A. We shall now introduce the
square matrix 1n which share a similar property but with respect to the multiplication.
Indeed, let us set

1n :=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


or equivalently 1n ∈ Mn(R) is the matrix having 1 on its diagonal, and 0 everywhere
else. Then one can show that for any A ∈ Mmn(R) one has A1n = A and 1m A = A,
see Exercise 2.3.

For the set of square matrices, we can define the notion of an inverse and state
several of their properties.

Definition 2.1.11. Let A ∈ Mn(R). The matrix B ∈ Mn(R) is an inverse for A if
AB = 1n and BA = 1n.

Lemma 2.1.12. The inverse of a matrix, if it exists, is unique

Proof. Assume that B1,B2 ∈ Mn(R) are inverses for A, i.e. AB1 = 1n = B1A and
AB2 = 1n = B2A, then one has

B1 = B11n = B1(AB2) = (B1A)B2 = 1nB2 = B2

which shows that B1 and B2 are equal.
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Since the inverse of a matrix A, if it exists, is unique, we can speak about the inverse
of A and denote it by A−1. In such a situation, A is called an invertible matrix.

Remark 2.1.13. We shall see later on that the property AB = 1n automatically implies
the property BA = 1n. Thus, it follows either from AB = 1n or from BA = 1n that B
is the inverse of A, i.e. B = A−1.

Properties 2.1.14. Let A,B ∈ Mn(R) both having an inverse, and let λ ∈ R∗. Then

(i)
(
A−1

)−1
= A,

(ii) t
(
A−1

)
=
(
tA
)−1

,

(iii) (λA)−1 = λ−1A−1,

(iv) (AB)−1 = B−1A−1.

Proof. (i) Since
(
A−1

)
A = 1n = A

(
A−1

)
, it follows that A is the inverse of A−1,

i.e.
(
A−1

)−1
= A.

(ii) Since t
(
A−1

)
tA = t

(
AA−1

)
= t1n = 1n and since tAt

(
A−1

)
= t
(
A−1A

)
= t1n =

1n, it follows that
t
(
A−1

)
is the inverse of tA, or in other words

(
tA
)−1

= t
(
A−1

)
.

(iii) One has (λA)(λ−1)A−1 = λλ−1AA−1 = 1n = (λ−1A−1)(λA), which means
that λ−1A−1 is the inverse for λA.

(iv) One observes that
(
B−1A−1

)
(AB) = 1n = (AB)

(
B−1A−1

)
, which shows that

(AB)−1 is given by B−1A−1.

Note that thanks to Remark 2.1.13 one could have simplified the above proof by
checking only one condition for each inverse. Let us still introduce some special classes
of matrices and the notion of similarity, which are going to play an important role in
the sequel.

Definition 2.1.15. (i) If A ≡ (aij) ∈ Mn(R) with aij = 0 whenever i ̸= j, then A
is called a diagonal matrix,

(ii) If A ≡ (aij) ∈ Mn(R) with aij = 0 whenever i > j, then A is called an upper
triangular matrix,

(iii) If A ∈ Mn(R) and if there exists m ∈ N such that Am := AA . . .A︸ ︷︷ ︸
m times

= O, then A

is called a nilpotent matrix.

Definition 2.1.16. For A,B ∈ Mn(R) one says that A and B are similar if there exists
an invertible matrix U ∈ Mn(R) such that

B = UAU−1 .

Lemma 2.1.17. Let A,B ∈ Mn(R) be two similar matrices. Then
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(i) A is invertible if and only if B is invertible,

(ii) tA and tB are similar,

(iii) A is nilpotent if and only if B is nilpotent.

Proof. Let us assume that B = UAU−1 for some invertible matrix U ∈ Mn(R).
(i) Assume that A is invertible, and observe that

B(UA−1U−1) = UAU−1UA−1U−1 = 1n

which means that UA−1U−1 is the inverse of B. As a consequence, B is invertible.
Similarly, if one assumes that B is invertible, then U−1B−1U is an inverse for A, as it
can easily be checked. One then deduces that A is invertible.

(ii) One observes that

tB = t(UAU−1) = t
(
U−1

)
tAtU = (tU)−1 tAt

(
(tU)−1

)−1
= V tAV−1

with V := (tU)−1 which is invertible. Thus tA and tB are similar.
(iii) If Am = O, then

Bm =
(
UAU−1

)m
= (UAU−1)(UAU−1) . . . (UAU−1)︸ ︷︷ ︸

m times

= UAmU−1 = O.

Similarly, if Bm = O, then Am = U−1BmU = O, which proves the statement.

2.2 Matrices and elements of Rn

In this section we show how a matrix can be applied to an element of Rn. In fact, such
an action has implicitly been mentioned in Example 2.1.8, but we shall now develop
this point of view.

First of all, we shall now modify the convention used in the previous chapter. In-
deed, for convenience we have written A = (a1, a2, . . . , an) for any element of Rn.

However, from now on we shall write A =

( a1
a2
...
an

)
for elements of Rn. However, the

following alternative notation will also be used: A = t(a1 a2 . . . an), or equivalently
tA = (a1 a2 . . . an). Note that is coherent with the notion of transpose of a matrix, since
column vector are identified with elements of Mn1(R) while row vectors are identified
with elements of M1n(R), see Remark 2.1.2.

The main interest in this notation is that a m×n matrix can now easily be applied
to a column vector, and the resulting object is again a column vector. For example1 2 3

4 5 6
7 8 9


︸ ︷︷ ︸

∈M33(R)

x1

x2

x3


︸ ︷︷ ︸

∈R3

=

1x1 + 2x2 + 3x3

4x1 + 5x2 + 6x3

7x1 + 8x2 + 9x3


︸ ︷︷ ︸

∈R3

. (2.2.1)
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More generally, one has
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


︸ ︷︷ ︸

∈Mmn(R)


x1

x2
...
xn


︸ ︷︷ ︸

∈Rn

=


y1
y2
...
ym


︸ ︷︷ ︸

∈Rm

or in other words by applying a m × n matrix to an element of Rn one obtains an
element of Rm.

Let us also observe that with the above convention for elements of Rn in mind,
the scalar product A · B of A,B ∈ Rn introduced in Definition 1.3.1 can be seen as a
product of matrices. Indeed the following equalities hold:

A ·B =
n∑

j=1

ajbj = (a1 a2 . . . an)


b1
b2
...
bn

 = tAB (2.2.2)

where the left hand side corresponds to the scalar product of two elements of Rn while
the right hand side corresponds to a product of a matrix in M1n(R) with a matrix in
Mn1(R).

We can also see that the product of two matrices can be rewritten with an alternative
notation. Indeed, for any A ∈ Mmn(R) let us set Aj ∈ Mm1(R) for the jth column of
A, and Ai ∈ M1n(R) for the ith row of A. More explicitly one sets

A =
(
A1 A2 . . . An

)
and A =


A1

A2
...

Am

 . (2.2.3)

With this notation, for any A ∈ Mmn(R) and B ∈ Mnp(R), the matrix C := AB is given
by

cik = AiBk (2.2.4)

where the right hand side corresponds to the product of Ai ∈ M1n(R) with Bk ∈
Mn1(R). In other words one can still write

cik = (row i of A)


col.
k
of
B

 .
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2.3 Homogeneous linear equations

In this section, we consider linear systems of equations when the number of unknowns
is strictly bigger than the number of equations.

Example 2.3.1. Let us consider the equation

2x+ y − 4z = 0

and look for a non-trivial solution, i.e. a solution
(

x
y
z

)
∈ R3 with

(
x
y
z

)
̸=
(

0
0
0

)
. By

writing x = −y+4z
2

and by choosing ( y
z ) with ( y

z ) ̸= ( 0
0 ), one gets for example

(
x
y
z

)
=(

3/2
1
1

)
. Note that an infinite number of other solutions exist.

Example 2.3.2. Let us consider the linear system of equations{
2x1 + 3x2 − x3 = 0
x1 + x2 + x3 = 0

and look for a non-trivial solution. By multiplying the second equation by 2 and by
subtracting it to the first equation one obtains{

2x1 + 3x2 − x3 − 2(x1 + x2 + x3) = 0
x1 + x2 + x3 = 0

⇔
{

x2 − 3x3 = 0
x1 + x2 + x3 = 0

⇔
{

x2 = 3x3

x1 + x2 + x3 = 0
.

Thus, a solution is for example
(

x1
x2
x3

)
=
(

−4
3
1

)
, but again this is one solution amongst

many others.

More generally, if one starts with a system of m equations for n unknowns

( x1

...
xn

)
with n > m, one can eliminate one unknown (say x1) and obtains m− 1 equations for
n−1 unknowns. By doing this process again, one can then eliminate one more unknown
(say x2) and obtains m− 2 equations for n− 2 unknowns. Obviously, this can be done
again and again...

Question: Can we always find a non-trivial solution in such a situation ? The answer
is yes, as we shall see now.

Let us consider the following system of m equations for n unknowns:
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

(2.3.1)
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with aij ∈ R and bi ∈ R. By using the notation introduce before, this system can be
rewritten as

AX = B

with A = (aij) ∈ Mmn(R), X =

( x1

...
xn

)
∈ Rn and B =

( b1
...
bm

)
∈ Rm.

Definition 2.3.3. For any A = (aij) ∈ Mmn(R), X =

( x1

...
xn

)
∈ Rn and B =

( b1
...
bm

)
∈

Rm, the system
AX = 0

is called the homogeneous linear system associated with the linear system AX = B.

One easily observes that the solution X = 0 ∈ Rn is always a solution of the
homogeneous system.

Theorem 2.3.4. Let 
a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0

(2.3.2)

be a homogeneous linear system of m equations with for n unknowns, with n > m. Then
the system has a non-trivial solution (and maybe several).

Remark 2.3.5. As already mentioned, (2.3.2) is equivalent to AX = 0, with A ∈
Mmn(R) and X ∈ Rn. Then, by using the notation introduced in (2.2.3), this system is
still equivalent to A1

...
Am

X =

0
...
0

 (2.3.3)

where Ai ∈ M1n for i ∈ {1, . . .m}. Thus, (2.3.3) can still be rewritten as the m equations
AiX = 0 for i ∈ {1, . . .m}, with the notation analogous to the one already used in
(2.2.4). In other words, (2.3.2) is equivalent to

tAi ·X = 0 for i ∈ {1, . . . ,m},

meaning that X is orthogonal to all vectors tAi ∈ Rn.

Proof of Theorem 2.3.4. The proof consists in an induction procedure.
1) If m = 1, then the system reduces to the equation a11x1 + · · · + a1nxn = 0. If

a11 = · · · = a1n = 0, then any

( x1

...
xn

)
̸=
(

0
...
0

)
is a non-trivial solution. If a11 ̸= 0, then

x1 =
−a12x2 − · · · − a1nxn

a11
, (2.3.4)
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and we can choose any

( x2

...
xn

)
̸=
(

0
...
0

)
and then determine x1 by (2.3.4). The final

solution is non-trivial. Note that the choice a11 ̸= 0 is arbitrary, and any other choice
would lead to a non-trivial solution.

2) Assume that the statement is true for some m−1 equations and n−1 unknowns,
and let us prove that it is still true form equations and n unknowns. Again, if all aij = 0,

then any

( x1

...
xn

)
̸=
(

0
...
0

)
is a non-trivial solution. If a11 ̸= 0, let us consider the system


tA2 ·X − a21

a11
tA1 ·X = 0

...
tAm ·X − am1

a11
tA1 ·X = 0

with the notations recalled in Remark 2.3.5. Since the coefficients multiplying x1 are
all 0, this system is a system of m − 1 equations for n − 1 unknowns. By assumption,

such a system has a non-trivial solution which we denote by

( x2

...
xn

)
. Then, by solving

tA1 ·X = 0, one obtains that x1 is given by (2.3.4) and thus there exists

( x1

...
xn

)
̸=
(

0
...
0

)
which is a solution of the system.

3) Since m,n were arbitrary with the only condition n > m, one has exhibited a
non-trivial solution for the original system.

2.4 Row operations and Gauss elimination

Recall that a system of m equations for n unknowns as written in (2.3.1) is equivalent
to the equation

AX = B (2.4.1)

with A ∈ Mmn(R), B ∈ Rm and for the unknown X ∈ Rn.

Question: Given A and B, can one always find a solution X for the equation (2.4.1) ?
In some special cases, as seen in the previous chapter with B = 0 and n > m, the

answer is yes. We present a here a second special case.

Lemma 2.4.1. Assume that m = n and that A ∈ Mn(R) is invertible. Then the system
(2.4.1) admits a unique solution given by X := A−1B.

Proof. One directly checks that if X = A−1B, then A(A−1)B = B, as expected. On
the other hand, if there would exist X ′ ∈ Rn with X ′ ̸= X and satisfying AX ′ = B,
then by applying A−1 on the left of both sides of this equality one gets

A−1(AX ′) = A−1B ⇔ X ′ = A−1B = X

which is a contradiction. Thus the solution to (2.4.1) is unique in this case.
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Note that finding A−1 might be complicated, and how can we deal with the general
case m ̸= n ? In order to get an efficient way for dealing with linear systems, let us start
by recalling a convenient way for solving linear systems. Let us consider the system

2x+ y + 4z + w = −2
−3x+ 2y − 3z + w = 1
x+ y + z = −1

(2.4.2)

and look for a solution to it. By some simple manipulations one gets
2x+ y + 4z + w = −2
−3x+ 2y − 3z + w = 1
x+ y + z = −1

r1−2r3⇐==⇒


0x− y + 2z + w = 0
−3x+ 2y − 3z + w = 1
x+ y + z = −1

r2+3r3⇐==⇒


−y + 2z + w = 0
0x+ 5y + 0z + w = −2
x+ y + z = −1

r1↔r3⇐==⇒


x+ y + z = −1
5y + w = −2
−y + 2z + w = 0

r2+5r3⇐==⇒


x+ y + z = −1
0y + 10z + 6w = −2
−y + 2z + w = 0

−r3↔r2⇐===⇒


x+ y + z = −1
y − 2z − w = 0
10z + 6w = −2

.

A special solution for this system is obtained for example by fixing z = −2, and then
by deducing successively that w = 3, y = −1 and x = 2. In other words a solution to

this system is given by
( x

y
z
w

)
=

(
2
−1
−2
3

)
.

Let us now rewrite these manipulations in an equivalent way. A priori, it will look
longer, but with some practice, the size of the computations will become much shorter.
For that purpose, consider the augmented matrix 2 1 4 1 −2

−3 2 −3 1 1
1 1 1 0 −1


obtained by collecting in the same matrix the coefficients of the linear system together
with the coefficients on the right hand side of the equality. Then, one can perform the
following elementary operations 2 1 4 1 −2

−3 2 −3 1 1
1 1 1 0 −1

 r1−2r3∼

 0 −1 2 1 0
−3 2 −3 1 1
1 1 1 0 −1


r2+3r3∼

0 −1 2 1 0
0 5 0 1 −2
1 1 1 0 −1

 r1↔r3∼

1 1 1 0 −1
0 5 0 1 −2
0 −1 2 1 0


r2+5r3∼

1 1 1 0 −1
0 0 10 6 −2
0 −1 2 1 0

 −r3↔r2∼

1 1 1 0 −1
0 1 −2 −1 0
0 0 10 6 −2





36 CHAPTER 2. MATRICES AND LINEAR EQUATIONS

from which one deduces the new system of equations
x+ y + z = −1
y − 2z − w = 0
10z + 6w = −2

.

Note that this system is the one we had already obtained at the end of the previous
computation. For completeness, let us write all its solutions, namely the system is
equivalent to 

x = 4w−2
5

y = −w−2
5

z = −3w−1
5

w arbitrary element of R

.

Based on this example, let us formalize the procedure.

Definition 2.4.2. An elementary row operation on a matrix consists in one of the
following operations:

(i) multiplying one row by a non-zero number,

(ii) adding (or subtracting) one row to another row,

(iii) interchanging two rows.

Definition 2.4.3. Two matrices are row equivalent if one of them can be obtained from
the other by performing a succession of row elementary operations. One writes A ∼ B
if A and B are row equivalent.

Proposition 2.4.4. Let A,A′ ∈ Mmn(R) and let B,B′ ∈ Rm. If the augmented matrix
(A, B) and (A′, B′), both belonging to Mm(n+1)(R), are row equivalent then any solution
X ∈ Rn of the system AX = B is a solution of the system A′X = B′, and vice versa.

The proof of this statement consists simply in checking that the systems of linear
equations are equivalent at each step of the procedure. This can be inferred from the
example shown above, and can be proved without any difficulty.

Definition 2.4.5. A matrix is in row echelon form if it satisfies the following property:
Whenever two successive rows do not consist entirely of 0, then the second row starts
with a non-zero entry at least one step further than the first row. All the rows consisting
entirely of 0 are at the bottom of the matrix.

Examples 2.4.6. The following matrices are in row echelon form:
1 0 0 0
0 2 0 0
0 0 0 4
0 0 0 0

 ,

2 0 0 1 1
0 1 0 1 0
0 0 3 2 0

 ,

0 1 0 2
0 0 1 3
0 0 0 0

 .
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Theorem 2.4.7. Every matrix is row equivalent to a matrix in row echelon form.

Again, the proof is a simple abstraction of what has been performed on the above
example. Note that checking this kind of properties is a good exercise for computer
sciences. Indeed, the necessary iterative procedure can be easily implemented by some
bootstrap arguments.

Definition 2.4.8. The first non-zero coefficients occurring on the left of each row on
a matrix in row echelon form are called the leading coefficients.

Corollary 2.4.9. Every matrix is row equivalent to a matrix in row echelon form and
with all leading coefficients equal to 1.

Proof. Use the previous theorem and divide each non-zero row by its leading coefficient.

Corollary 2.4.10. Each matrix is row equivalent to a matrix in row echelon form, with
leading coefficients equal to 1, and with 0’s above each leading coefficient.

We shall say that such matrices are in the standard form. Examples of such matrices
are 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 ,

1 0 0 1/2 1/2
0 1 0 1 0
0 0 1 2/3 0

 ,


1 0 1 0
0 1 2 0
0 0 0 1
0 0 0 0

 ,

1 0 3
0 1 0
0 0 0

 .

Proof of Corollary 2.4.10. Starting from a matrix in row echelon form with all leading
coefficients equal to 1, subtract sufficiently many times each row to the rows above it.
Do this procedure iteratively, starting with the second row and going downward.

Example 2.4.11. Let us finally use this method on an example. In order to solve the
linear system 

2x+ y + 4z + w = 0
−3x+ 2y − 3z + w = 0
x+ y + z = 0

,

we consider the augmented matrix and some elementary row operations:(
2 1 4 1 0
−3 2 −3 1 0
1 1 1 0 0

)
∼
(

1 1 1 0 0
0 −1 2 1 0
0 5 0 1 0

)
∼
(

1 1 1 0 0
0 1 −2 −1 0
0 0 10 6 0

)
∼
(

1 0 0 −4/5 0
0 1 0 1/5 0
0 0 1 3/5 0

)
.

Then, we immediately infer from the last matrix the general solution
x = 4/5 w
y = −1/5 w
z = −3/5 w
w arbitrary

.

Note that adding the last column in the augmented matrix was not useful in this special
case.
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Note that it is only when the augmented matrix is in the standard form that the
solutions of the linear system can be written down very easily. This method for solving
linear system of equations is often call Gauss elimination or Gauss-Jordan elimination2.
However, Chinese people were apparently using this method already 2000 years ago,
see Chapter 1.2 of Bretscher’s book3 for details...

2.5 Elementary matrices

In this section we construct some very simple matrices and show how they can be used
in conjunction with Gauss elimination. For r, s ∈ {1, . . . ,m} let Irs ∈ Mm(R) be the
matrix whose rs-component is 1 and all the other ones are equal to 0. More precisely
one has

(Irs)ij = 1 if i = r and j = s, (Irs)ij = 0 otherwise.

These matrices satisfy the relation

Irs Ir′s′ =

{
Irs′ if s = r′

O if s ̸= r′
.

See Exercise 2.21 for the proof of this statement.

Definition 2.5.1. The following matrices are called elementary matrices:

(i) 1m − Irr + cIrr, for c ̸= 0,

(ii) (1m + Irs + Isr − Irr − Iss), for r ̸= s,

(iii) (1m + cIrs), for r ̸= s and c ̸= 0.

Lemma 2.5.2. (i) Each elementary matrix is invertible, and its inverse is again an
elementary matrix.

(ii) If A ∈ Mmn(R), all elementary row operations on A can be obtained by applying
successively elementary matrices on the left of A.

The proof of these statements are provided in Exercises 2.14 and 2.21. Note that the
second statements means that if A ∈ Mmn(R) and B1, . . . ,Bp are elementary matrices,
then BpBp−1 . . .B1A is row equivalent to A.

Observation 2.5.3. Assume that B ∈ Mm(R) is a square matrix with its last row
entirely filled with 0, then B is not invertible. Indeed, with the notation introduced
in (2.2.3), the assumption means that Bm = t0. Now, by absurd let us assume that
A ∈ Mm(R) is an inverse for B, or equivalently that BA = 1m. Then, since equation

2Johann Carl Friedrich Gauss: 30 April 1777 – 23 February 1855; Wilhelm Jordan: 1 March 1842 –
17 April 1899.

3O. Bretscher, Linear Algebra with Applications, International Edition, Prentice Hall, 2008.



2.5. ELEMENTARY MATRICES 39

(2.2.4) would hold for this product, one would have (1m)ik = BiA
k, and in particular

for i = k = m one would have 1 = BmAm, which is impossible since Bm is made only
of 0. Thus, one concludes that there does not exist any inverse for B, or equivalently
that B is not invertible.

In the next statement, we provide information about invertibility of square matrices.

Theorem 2.5.4. (i) Let A,A′ ∈ Mm(R) be row equivalent. Then A is invertible if
and only if A′ is invertible,

(ii) Let A ∈ Mm(R) be upper triangular with non-zero diagonal elements. Then A is
invertible,

(iii) Any A ∈ Mm(R) is invertible if and only if A is row equivalent to 1m.

Proof. (i) This part of the proof is provided in Exercise 2.22.
(ii) Observe first that an upper triangular matrix is already in row echelon form.

Then by dividing each row by its leading term one obtains that A is row equivalent to
a matrix in row echelon form and with 1 on its diagonal. Then, by subtracting each
row coherently, starting with the second row and going downward, one obtains that A
is row equivalent to 1m. Since 1m is invertible, it follows from the point (i) that A is
invertible as well.

(iii) ⇐=: If A is row equivalent to 1m it follows from (i) that A is invertible. =⇒:
By Corollary 2.4.10 we know that A is row equivalent to a m × m matrix B in the
standard form. Since B is a square matrix, it follows that either B is equal to 1m or B
has at least its last row filled only with 0. Note that in the former case B is invertible
while in the second case B is not invertible, see Observation 2.5.3. However, since A is
invertible and row equivalent to B, it follows from (i) that B is invertible as well, and
therefore B has to be the identity matrix.

Corollary 2.5.5. Any invertible m × m matrix can be expressed as a product of ele-
mentary matrices.

Proof. This statement directly follows from the point (iii) of the previous theorem.
Indeed, if BpBp−1 . . .B1A = 1m with each Bj an elementary matrix, then

A = B−1
1 B−1

2 . . .B−1
p 1m = B−1

1 B−1
2 . . .B−1

p ,

which proves the statement.

Remark 2.5.6. It will be useful to observe that if BpBp−1 . . .B1A = 1m for some
elementary matrices Bj then

A−1 = BpBp−1 . . .B1.

This observation directly leads to a convenient method for finding the inverse of a matrix
A. Indeed, if A ∈ Mn(R), by considering the augmented matrix (A,1n) with n rows but
2n columns, and by performing elementary row operations such that A is transformed
into the matrix 1n, then the second part of the matrix will be equal to A−1. In other
words, one obtains that (A,1n) is row equivalent to (1n,A−1).
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2.6 Exercises

Exercise 2.1. Let us consider

A =

(
1 2 3
−1 0 2

)
and B =

(
−1 5 −2
1 1 −1

)
.

Compute A+ B, A− 2B, and tA.

Exercise 2.2. Write the proofs for Properties 2.1.10.

Exercise 2.3. Let A ∈ Mmn(R). Show that 1m A = A = A1n.

Exercise 2.4. One says that a matrix A ∈ Mn(R) is symmetric if tA = A and is
skew-symmetric if tA = −A. Show that for an arbitrary matrix A ∈ Mn(R), the matrix
A+ tA is symmetric while the matrix A− tA is skew-symmetric.

Exercise 2.5. Let A ∈ Mn(R).

1. If A2 = O, show that 1n −A is invertible.

2. More generally, if A is nilpotent, show that 1n −A is invertible.

3. Suppose that A2 + 2A+ 1n = O. Show that A is invertible.

Exercise 2.6. If A,B ∈ Mn(R) are two upper triangular matrices, show that the product
AB is also an upper triangular matrix.

Exercise 2.7. 1. Find some A ∈ M2(R) such that A2 = −12.

2. Determine all A ∈ M2(R) such that A2 = O.

Exercise 2.8. Let a, b be real numbers and let

A =

(
1 a
0 1

)
and B =

(
1 b
0 1

)
.

What is AB ? Compute A2 and A3. What is Am for an arbitrary integer m, and how
to prove it ?

Exercise 2.9. One says that a matrix A ∈ Mn(R) is orthogonal if tA = A−1, or
equivalently if tAA = 1n. Show that if A ∈ Mn(R) is an orthogonal matrix, then

1. ∥AX∥ = ∥X∥ for any X ∈ Rn,

2. (AX) · (AY ) = X · Y for any X,Y ∈ Rn.

In other words, orthogonal matrices preserve lengths and angles between vectors of Rn.
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Exercise 2.10. A special type of 2× 2 matrices represents rotations in the plane. For
arbitrary θ ∈ R, consider the matrix

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

1. Show that for arbitrary θ1, θ2 one has R(θ1)R(θ2) = R(θ2)R(θ1),

2. Show that for arbitrary θ1, θ2 one has R(θ1)R(θ2) = R(θ1 + θ2),

3. Show that for any θ, the matrix R(θ) has an inverse and write down this inverse.

Exercise 2.11. For any θ ∈ R, recall that the matrix

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
represents a rotation by θ in R2.

1. For tX = (1, 2), what are its coordinates after a rotation of π/4 ?

2. For tY = (−1, 3), what are its coordinates after a rotation of π/2 ?

Draw a picture of your results.

Exercise 2.12. Let

A =


2 3 −1 1
1 4 2 −2
−1 1 3 −5
1 2 3 4


and let U be one of the matrices shown below. Compute UA.

a) U =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 b) U =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 c) U =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0



d) U =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 e) U =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 f) U =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


Exercise 2.13. Do the same exercise with the following matrices U and A as above:

a) U =

(
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

)
b) U =

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
c) U =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 5 0 1

)
d) U =

(
1 0 0 0
0 1 0 0
0 −2 1 0
0 0 0 1

)
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Exercise 2.14. Let A ∈ Mmn(R). For r ∈ {1, . . . ,m} and s ∈ {1, . . . ,m}, let Irs ∈
Mm(R) be the matrix whose rs-component is 1 and all the other ones are equal to 0.
Answer the following questions with words :

1. What is IrsA ?

2. For r ̸= s, what is (Irs + Isr)A ?

3. For r ̸= s, what is (1m + Irs + Isr − Irr − Iss)A ?

4. For r ̸= s, what is (1m + cIrs)A, for some c ∈ R ?

Exercise 2.15. Find a non-trivial solution for each of the following systems of equa-
tions.

a) 2x− 3y + 4z = 0

3x+ y + z = 0

b) 2x+ y + 4z + w = 0

−3x+ 2y − 3z + w = 0

x+ y + z = 0

c) − 2x+ 3y + z + 4w = 0

x+ y + 2z + 3w = 0

2x+ y + z − 2w = 0

Exercise 2.16. Let A ∈ Mmn(R) and B ∈ Rm.

1. Assume that X ∈ Rn is a solution of AX = 0. Show that for any c ∈ R, the
vector cX is also a solution of this equation.

2. Assume that X,X ′ ∈ Rn are solutions of the equations AX = 0 and AX ′ = 0.
Show that X +X ′ is also a solution of this equation.

3. Assume that Y ∈ Rn is a solution of the equation AY = B, and assume that
X ∈ Rn is a solution of the homogeneous equation AX = 0. Show that Y +X is
still a solution of the original equation.

Exercise 2.17. In each of the following cases find a row equivalent matrix in the stan-
dard form.

a)

 6 3 −4
−4 1 −6
1 2 −5

 b)

1 0 2
2 −1 3
4 1 8

 c)

0 1 3 −2
2 1 −4 3
2 3 2 −1

 d)

1 2 −1 2 1
2 4 1 −2 3
3 6 2 −6 5
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Exercise 2.18. Find all vectors in R4 which are perpendicular to the vectors

t(1, 1, 1, 1), t(1, 2, 3, 4), t(1, 9, 9, 7)

Exercise 2.19. By using Gauss elimination, find all solution for the following systems:

a) x+ y − 2z = 5

2x+ 3y + 4z = 2

b) x3 + x4 = 0

x2 + x3 = 0

x1 + x2 = 0

x1 + x4 = 0

c) x1 + 2x2 + 2x4 + 3x5 = 0

x3 + 3x4 + 2x5 = 0

x3 + 4x4 − x5 = 0

x5 = 0

Exercise 2.20. Find a polynomial of degree 3 whose graph goes through the points
(0,−1), (1,−1), (−1,−5) and (2, 1).

Exercise 2.21. For r ∈ {1, . . . ,m} and s ∈ {1, . . . ,m}, let Irs ∈ Mm(R) be the
matrix whose rs-component is 1 and all the other ones are equal to 0. First show that
if r, s, r′, s′ ∈ {1, . . . ,m} then

Irs Ir′s′ =

{
Irs′ if s = r′

O if s ̸= r′

Then, for c ̸= 0, consider the following 3 types of matrices :

1. 1m − Irr + cIrr, the matrix obtained from the identity matrix by multiplying the
r-th diagonal component by c,

2. For r ̸= s, (1m+Irs+Isr−Irr−Iss), the matrix obtained from the identity matrix
by interchanging the r-th row with the s-th row,

3. For r ̸= s, (1m+ cIrs), the matrix having the rs-th component equal to c, all other
components 0 except the diagonal components which are equal to 1.

Show that these matrices are invertible and exhibit their inverse. If A ∈ Mmn(R), show
that multiplying the matrix A on the left by one of these matrices corresponds to one of
the elementary row operations. For that reason, these matrices are called elementary
matrices.
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Exercise 2.22. Let A,A′ ∈ Mn(R) be row equivalent. With the help of the previous
exercise, prove the following statements : A is invertible if and only if A′ is invertible.

Exercise 2.23. By using elementary row operations, find the inverse for the following
matrices :

a)

1 2 −1
0 1 1
0 2 7

 b)

2 1 2
0 3 −1
4 1 1

 c)

 2 4 3
−1 3 0
0 2 1


Exercise 2.24. Consider the equation

x+ 2y + 3z = 4

x+ ky + 4z = 6

x+ 2y + (k + 2)z = 6

where k is an arbitrary constant.

1. For which values of k does this system have a unique solution ?

2. For which values of k does this system have no solution ?

3. For which values of k does this system have infinitely many solutions ?

Exercise 2.25. A conic is a curve in R2 that can be described by an equation of the
form

f(x, y) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 = 0,

where at least one of the coefficients ci is non-zero. Find the conic passing through the
following points.

i) (0, 0), (1, 0), (0, 1), (1, 1).

ii) (0, 0), (1, 0), (2, 0), (3, 0), (1, 1).

Exercise 2.26. Let A ∈ Mmn(R) and X = t(x1, . . . , xn) ∈ Rn. The columns of A are
denoted by A1, . . . ,An, while the rows of A are denoted by A1, . . . ,Am. Show that the
following three statements are equivalent :

1. AX = 0,

2. the vector X is perpendicular to the vector tAj, for each j ∈ {1, . . . ,m},

3. the following linear relation holds :

x1A1 + x2A2 + · · ·+ xnAn = 0.



2.6. EXERCISES 45

Exercise 2.27. By using elementary row operations, find the inverse for the following
matrices :

a)

1 1 1
2 3 2
3 8 2

 b)


1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1


Exercise 2.28. For which values of the parameter k is the following matrix invertible:(

4 3− k
1− k 2

)
Exercise 2.29. To gauge the complexity of a computational task, one can count the
number of elementary operations (additions, subtractions, multiplications and divisions)
required. For a rough count, one can consider multiplication and divisions only, referring
to those jointly as multiplicative operations. Start by considering a 2 by 2 invertible
matrix ( a b

c d ) and check that 8 multiplicative operations are necessary for inverting this
matrix by using the Gauss elimination technique.

(i) How many multiplicative operations are necessary for inverting a 3× 3 matrix by
the same technique ?

(ii) What about a n× n matrix ?

(iii) If a very slow computer needs 1 second to invert a 3× 3 matrix, how long will it
take to invert a 12× 12 matrix ?

Exercise 2.30. Write if the following statements are ”true” or ”false”. Justify briefly
your answer, or give a counterexample.

1. If A and B are symmetric matrices, then A+ B is symmetric,

2. If A is symmetric and A ̸= O, then A is invertible,

3. If AB = O, then either A or B is the matrix O,

4. If A2 = 1, then A is invertible,

5. If A,B are invertible matrices, then BA is an invertible matrix,

6. If A ∈ Mn(R), B ∈ Rn with B ̸= 0, and if X and X ′ satisfy AX = B and
AX ′ = B, then (X +X ′) satisfies the same equation,

7. If A is diagonal and if B is an arbitrary matrix, then the product AB is diagonal,

8. There exists an invertible matrix A such that A−1 = ( 1 2
0 0 ),

9. Every matrices can be expressed as the product of elementary matrices,

10. ( 0 1
1 0 ) is an orthogonal matrix.
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