
Chapter 1

Geometric setting

In this Chapter we recall some basic notions on points or vectors in Rn. The norm of a
vector and the scalar product between two vectors are also introduced.

1.1 The Euclidean space Rn

We set N := {1, 2, 3, . . . } for the set of natural numbers, also called positive integers,
and let R be the set of all real numbers.

Definition 1.1.1. One sets

Rn =
{
(a1, a2, . . . , an) | aj ∈ R for all j ∈ {1, 2, . . . , n}

}
1.

Alternatively, an element of Rn, also called a n-tuple or a vector, is a collection of n
numbers (a1, a2, . . . , an) with aj ∈ R for any j ∈ {1, 2, . . . , n}. The number n is called
the dimension of Rn.

In the sequel, we shall often write A ∈ Rn for the vector A = (a1, a2, . . . , an). With
this notation, the values a1, a2, . . . , an are called the components or the coordinates of
A. For example, a1 is the first component of A, or the first coordinate of A. Be aware
that (1, 3) and (3, 1) are two different elements of R2. Note that one often writes (x, y)
for elements of R2 and (x, y, z) for elements of R3, see Figure 1.1. However this notation
is not really convenient in higher dimensions.

The set Rn can be endowed with two operations, the addition and the multiplication
by a scalar.

Definition 1.1.2. For any A,B ∈ Rn with A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)
and for any λ ∈ R one defines the addition of A and B by

A+B := (a1 + b1, a2 + b2, . . . , an + bn) ∈ Rn

and the multiplication of A by the scalar λ by

λA := (λa1, λa2, . . . , λan) ∈ Rn.

1The vertical line | has to be read “such that”.
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Figure 1.1: Elements of R2 and R3

Examples 1.1.3. (i) (1, 3) + (2, 4) = (3, 7) ∈ R2,

(ii) (1, 2, 3, 4, 5) + (5, 4, 3, 2, 1) = (6, 6, 6, 6, 6) ∈ R5,

(iii) 3(1, 2) = (3, 6) ∈ R2,

(iv) π(0, 0, 1) = (0, 0, π) ∈ R3.

One usually sets

0 = (0, 0, . . . , 0) ∈ Rn

and this element satisfies A + 0 = 0 + A = A for any A ∈ Rn. If A = (a1, a2, . . . , an)
one also writes −A for the element −1A = (−a1,−a2, . . . ,−an). Then, by an abuse of
notation, one writes A−B for A+(−B) if A,B ∈ Rn, and obviously one has A−A = 0.
Note that A+B is defined if and only if A and B belong to Rn, but has no meaning if
A ∈ Rn and B ∈ Rm with n ̸= m.

Properties 1.1.4. If A,B,C ∈ Rn and λ, µ ∈ R then one has

(i) A+B = B + A, (commutativity)

(ii) (A+B) + C = A+ (B + C), (associativity)

(iii) λ(A+B) = λA+ λB, (distributivity)

(iv) (λ+ µ)A = λA+ µA,

(v) (λµ)A = λ(µA).

These properties will be proved in Exercise 1.3.
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1.2 Located vectors in Rn

A geometric picture can often aid our intuition (but can also be misleading). For ex-
ample, one often identifies R with a line, R2 with a plane and R3 with the usual 3
dimensional space. In this setting, an element A ∈ Rn is often called a point in Rn.
However, one can also think about the elements of Rn as arrows. In this setting, the
element (3, 5) ∈ R2 can be thought as an arrow starting at the point (0, 0) of the usual
plane with two axes and ending at the point (3, 5) of this plane, see Figure 1.2. With

x

y

A

Figure 1.2: A point seen as an arrow

this interpretation in mind, the addition of two elements of Rn corresponds the addi-
tion of two arrows, and the multiplication by a scalar corresponds to the rescaling of an
arrow, see Figure 1.3. Note that in the sequel both interpretations (points and arrows)
will appear, but this should not lead to any confusion.
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Figure 1.3: Addition of arrows and multiplication by λ = −1/2

In relation with this geometric interpretation, it is sometimes convenient to have
the following notion at hand.

Definition 1.2.1. For any A,B ∈ Rn we set
−→
AB for the arrow starting at A and ending

at B, and call it the located vector
−→
AB.
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Figure 1.4: The located vector
−→
AB

With this definition and for any A ∈ Rn the located vector
−→
0A corresponds to the

arrow mentioned in the previous geometric interpretation. For that reason, the located

vector
−→
0A is simply called a vector and is often identified with the element A of Rn.

Let us now introduce various relations between located vectors:

Definition 1.2.2. For A,B,C,D ∈ Rn, the located vectors
−→
AB and

−−→
CD are equivalent

if B − A = D − C. These located vectors are parallel if there exists λ ∈ R∗ ≡ R \ {0}
such that B − A = λ(D − C). In particular, they have the same direction if λ > 0 or
have opposite direction if λ < 0.

In Figure 1.5 equivalent located vectors and parallel located vectors are represented.

Note that the located vector
−→
AB is always equivalent to the located vector

−−−−−−→
0(B − A)
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Figure 1.5: Equivalent and parallel located vectors

which is located at the origin 0, see Figure 1.6. This fact follows from the equality

(B − A)− 0 = (B − A) = B − A.
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Figure 1.6: Located vector
−→
AB equivalent to the located vector

−−−−−−→
0(B − A)

Question: What could be the meaning for two located vectors to be perpendicular?
Even if one has an intuition in R2 or R3, one needs a precise definition for located
vectors in Rn.

1.3 Scalar product in Rn

Definition 1.3.1. For any A,B ∈ Rn with A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)
one sets

A ·B := a1b1 + a2b2 + · · ·+ anbn =
n∑

j=1

ajbj

and calls this number the scalar product between A and B.

For example, if A = (1, 2) and B = (3, 4), then A ·B = 1·3+2·4 = 3+8 = 11, but if
A = (1, 3) and B = (6,−2), then A ·B = 6−6 = 0. Be aware that the previous notation
is slightly misleading since the dot · between A and B corresponds to the scalar product
while the dot between numbers just corresponds to the usual multiplication of numbers.

Properties 1.3.2. For any A,B,C ∈ Rn and λ ∈ R one has

(i) A ·B = B · A,

(ii) A · (B + C) = A ·B + A · C,

(iii) (λA) ·B = A · (λB) = λ(A ·B),

(iv) A · A ≥ 0, and A · A = 0 if and only if A = 0.

These properties will be proved in Exercise 1.6.
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Definition 1.3.3. Two vectors A,B ∈ Rn are perpendicular or orthogonal if A·B = 0,

in which case one writes A ⊥ B. If A,B,C,D ∈ Rn, the located vectors
−→
AB and

−−→
CD

are perpendicular or orthogonal if they are equivalent to two perpendicular vectors, in

which case one writes
−→
AB ⊥

−−→
CD.
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Figure 1.7: Perpendicular vectors and perpendicular located vectors

Remark first that if A,B ∈ Rn are perpendicular, then A is also perpendicular to
λB for any λ ∈ R. Indeed, from the above properties, it follows that if A · B = 0
then A · (λB) = λ(A · B) = 0. Now, observe also that in the setting of the previous

definition, and since
−→
AB is equivalent to the vector

−−−−−−→
0(B − A) and since

−−→
CD is equivalent

to the vector
−−−−−−→
0(D − C), one has

−→
AB ⊥

−−→
CD if and only

−−−−−−→
0(B − A) is perpendicular to

−−−−−−→
0(D − C), i.e. if and only if

(B − A) · (D − C) = 0. (1.3.1)

Example 1.3.4. In Rn let us set E1 = (1, 0, . . . , 0), E2 = (0, 1, 0, . . . , 0), . . . , En =
(0, . . . , 0, 1) the n different vectors obtained by assigning a 1 at the coordinate j of Ej

and 0 for all its other coordinates. Then, one easily checks that

Ej · Ek = 0 whenever j ̸= k and Ej · Ej = 1 for any j ∈ {1, 2, . . . , n}.

These n vectors are said to be mutually orthogonal.

1.4 Euclidean norm in Rn

Recall that for any A ∈ Rn one has A2 := A · A ≥ 0.

Definition 1.4.1. The Euclidean norm or simply norm of a vector A ∈ Rn is defined
by ∥A∥ :=

√
A2. The positive number ∥A∥ is also referred to as the magnitude of A. A

vector of norm 1 is called a unit vector.
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Example 1.4.2. If A = (−1, 2, 3) ∈ R3, then A ·A = (−1)2+22+32 = 14 and therefore
∥A∥ =

√
14.

Remark 1.4.3. If n = 2 and in the geometric interpretation mentioned in Section 1.2,
one observes that the norm ∥A∥ of an element A ∈ R2 is compatible with Pythagoras
theorem.

Properties 1.4.4. For any A ∈ Rn and λ ∈ R one has

(i) ∥A∥ = 0 if and only if A = 0,

(ii) ∥λA∥ = |λ|∥A∥,

(iii) ∥ − A∥ = ∥A∥.

Note that the third point is a special case of the second point. The proof of these
properties will be provided in Exercise 1.8.

Definition 1.4.5. For any A,B ∈ Rn, the distance between A and B, denoted by
d(A,B), is defined by d(A,B) := ∥B − A∥.

Properties 1.4.6. For any A,B,C ∈ Rn one has

(i) d(A,B) = d(B,A),

(ii) d(A,B) = 0 if and only if A = B,

(iii) d(A− C,B − C) = d(A,B), and in particular d(A,B) = d(0, B − A).

The proofs of these properties are left as a free exercise. Now, keeping in mind the
geometric interpretation provided in Section 1.2, it is natural to set∥∥−→AB∥∥ := d(A,B)

and to call this number the length of the located vector
−→
AB. Indeed, it follows from this

definition and from Property 1.4.6.(iii) that∥∥−→AB∥∥ = d(A,B) = d(0, B − A) =
∥∥−−−−−−→0(B − A)

∥∥ = ∥B − A∥.

Thus, the length of the located vector
−→
AB corresponds to the norm of the vector (B −

A) ∈ Rn. One also observes that any two located vectors which are equivalent have the
same length.
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Question: If r > 0 and A ∈ Rn, what is{
B ∈ Rn | d(A,B) < r

}
?

Can one draw a picture of this set for n = 1, n = 2 or n = 3?

Definition 1.4.7. For r > 0 and A ∈ Rn, one defines

B(A, r) :=
{
B ∈ Rn | d(A,B) < r

}
and call B(A, r) the (open) ball centered at A and of radius r.

For example, if n = 2 then B(0, 1) corresponds to the (open) unit disc in the plane,
i.e. to the set of points on R2 which are at a distance strictly less than 1 from the
origin (0, 0). If n = 3 then B(0, 1) corresponds to the (open) unit ball in the usual 3
dimensional space.

x

y

(2,4)

1

1

Figure 1.8: The open ball B
(
(2, 4), 1

)
in R2

Let us now get a better intuition for the notion of orthogonal vectors. First of all,
consider the following property:

Lemma 1.4.8. For any A,B ∈ Rn one has

∥B + A∥ = ∥B − A∥ ⇔ A ·B = 0.

Proof. One has

∥B + A∥ = ∥B − A∥ ⇔ ∥B + A∥2 = ∥B − A∥2

⇔ (B + A) · (B + A) = (B − A) · (B − A)

⇔ B2 + 2A ·B + A2 = B2 − 2A ·B + A2

⇔ 4A ·B = 0,

which justifies the statement.
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Figure 1.9: The vectors A+B and A−B

By considering the geometric setting introduced in Section 1.2, one observes that
the condition ∥B + A∥ = ∥B − A∥ corresponds to our intuition for the two vectors A
and B being perpendicular, see Figure 1.9. More generally, one can prove the general
Pythagoras theorem:

Theorem 1.4.9. Two vectors A,B ∈ Rn are mutually orthogonal if and only if the
equality ∥A+B∥2 = ∥A∥2 + ∥B∥2 holds.

The proof of this Theorem is provided in Exercise 1.9.

Question: Let A,B ∈ Rn with B ̸= 0. Let P denote the point on the line passing

through 0 and B, and such that the located vector
−→
PA is perpendicular to the located

vector
−→
0B, see Figure 1.10. Clearly, P = cB for some c ∈ R, but how can one compute

c ?
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Figure 1.10:
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For the answer, it is sufficient to consider the following equivalences:

−→
PA ⊥

−→
0B ⇔

−−−−−−→
0(A− P ) ⊥

−→
0B

⇔ (A− P ) ·B = 0

⇔ (A− cB) ·B = 0

⇔ A ·B = cB2

⇔ c =
A ·B
∥B∥2

.

Definition 1.4.10. Let A,B ∈ Rn with B ̸= 0. Then the component of A along B is
by definition the number c := A·B

∥B∥2 . In this case cB is called the orthogonal projection
of A on B.

Let us recall from plane geometry that if one considers the right (or right-angled)
triangle with vertices the points 0, A and cB with A ̸= 0, B ̸= 0 and with c > 0, then
the angle θ at the vertex 0 satisfies

cos(θ) =
∥cB∥
∥A∥

=
c∥B∥
∥A∥

=
(A ·B)∥B∥
∥B∥2 ∥A∥

=
A ·B

∥A∥∥B∥
.

Note that the same argument also holds for c < 0, and thus one has for any such triangle

cos(θ) =
A ·B

∥A∥∥B∥
.

From the above considerations and since | cos(θ)| ≤ 1, one infers the following result:

Lemma 1.4.11. For any A,B ∈ Rn one has

|A ·B| ≤ ∥A∥∥B∥. (1.4.1)

Let us also deduce a very useful inequality called triangle inequality :

Lemma 1.4.12. For any A,B ∈ Rn one has

∥A+B∥ ≤ ∥A∥+ ∥B∥.

Proof. By taking into account the inequality (1.4.1) one obtains that

∥A+B∥2 = A2 +B2 + 2A ·B
≤ A2 +B2 + 2|A ·B|
≤ A2 +B2 + 2∥A∥∥B∥

=
(
∥A∥+ ∥B∥

)2
.

The expected result is then obtained by taking the square root on both sides of the
inequality.
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1.5 Parametric representation of a line

Let us consider P,N ∈ Rn with N ̸= 0, and let t ∈ R.

Question: What does {P + tN | t ∈ R} represent? Can one draw a picture of this
set?

Definition 1.5.1. For any P,N ∈ Rn with N ̸= 0 one defines

LP,N :=
{
P + tN | t ∈ R

}
and call this set the line passing through P and having the direction N . More precisely
LP,N is called the parametric representation of this line, see Figure 1.11.

Remark 1.5.2. (i) If N is replaced by λN for any λ ∈ R∗, then LP,λN describes
the same line. In addition, any element of LP,N can be used instead of P and the
resulting line will be the same.

(ii) If P,Q ∈ Rn, then the line passing through the two points P and Q is given by
LP,Q−P . Indeed one checks that LP,Q−P = {P + t(Q − P ) | t ∈ R}, and that this
line passes through P at t = 0 and passes through Q at t = 1.

(iii) For P,Q ∈ Rn, the set {P + t(Q − P ) | t ∈ [0, 1]} describes the line segment
starting at P and ending at Q.

Remark 1.5.3. If n = 2 a line is often describes by {(x, y) ∈ R2 | ax + by = c} for
some a, b, c ∈ R. Thus, in dimension 2 a line can be described by this formulation or
with LP,N for some P,N ∈ R2. Clearly, some relations between a, b, c and P,N can be
established. However, note that the above simple description does not exist for n > 2
while the definition LP,N holds in arbitrary dimension.

1.6 Planes and hyperplanes

Let us first recall that two located vectors are orthogonal if they are equivalent to two
perpendicular vectors.

Question: Let P,N ∈ R3 with N ̸= 0. How can one describe the plane passing
through P and perpendicular to the direction defined by the vector N ?

For the answer, consider a pointX belonging to this plane. By definition, the located

vector
−−→
PX is orthogonal to the located vector

−→
0N , or equivalently the located vector−−−−−−→

0(X − P ) is orthogonal to the located vector
−→
0N . Now this condition reads (X−P )⊥N ,

which is equivalent to (X − P ) · N = 0, or by a simple computation to the condition
X · N = P · N . In summary, the plane passing through P and perpendicular to the
direction defined by the vector N is given by{

X ∈ R3 | X ·N = P ·N
}
.
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Figure 1.11: Parametric representation of a line

In this case, one also says that the plan is normal to the vector N .

Example 1.6.1. If P = (2, 1,−1), N = (−1, 1, 3) and X = (x, y, z), then

X ·N = P ·N ⇔ (x, y, z) · (−1, 1, 3) = −2 + 1− 3 ⇔ −x+ y + 3z = −4.

Therefore, the plane passing through (2, 1,−1) and normal to the vector (−1, 1, 3) is
given by {

(x, y, z) ∈ R3 | −x+ y + 3z = −4
}
.

Let us now work in arbitrary dimension.

Definition 1.6.2. For any P,N ∈ Rn with N ̸= 0, the set

HP,N :=
{
X ∈ Rn | X ·N = P ·N

}
is called the hyperplane passing through P and normal to N .

Note that if P = (p1, p2, . . . , pn) and if N = (n1, n2, . . . , nn), then

HP,N =
{
(x1, x2, . . . , xn) ∈ Rn | n1x1 + n2x2 + · · ·+ nnxn =

n∑
j=1

pjnj

}
.

Remark 1.6.3. In the special case P ·N = 0, one observes that the element 0 belongs
to HP,N . Later on, we shall see that in this case HP,N is a vector space, see Chapter 3

Properties 1.6.4. For any P,N ∈ Rn with N ̸= 0, and for any λ ∈ R∗ one has

(i) HP,N = HP,λN ,

(ii) If P ′ ∈ HP,N , then HP ′,N = HP,N .
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The proof of these properties will be provided in Exercise 1.16. It is now natural to
define various notions related to hyperplanes. The following definitions correspond to
the intuition we can have in R2 or in R3.

Definition 1.6.5. Let P, P ′, N ∈ Rn with N ̸= 0 and with P ′ ̸∈ HP,N . Then the two
hyperplanes HP,N and HP ′,N are parallel.

Lemma 1.6.6. Two parallel hyperplanes have an empty intersection.

Proof. Let HP,N and HP ′,N be two parallel hyperplanes, and let us assume that there
exists X ∈ Rn which belongs to both hyperplanes. This assumption means that X ∈
HP,N andX ∈ HP ′,N , or equivalentlyX ·N = P ·N andX ·N = P ′·N . As a consequence,
it follows from these equalities that P ·N = P ′ ·N .

On the other hand, since the two planes are parallel, the assumption on P ′ is
P ′ ̸∈ HP,N , which means that P ′ · N ̸= P · N . Thus one has obtained a contradiction
since P ·N = P ′ ·N together with P ′ ·N ̸= P ·N is impossible. As a conclusion, there
does not exist any X in the intersection of the two hyperplanes, or equivalently this
intersection is empty.

Example 1.6.7. For n = 2, P = (0, 0), P ′ = (0, 1) and N = (1, 1), one checks that
P ′ · N = 1 ̸= 0 = P · N , and thus P ′ ̸∈ HP,N . In addition, if X = (x, y) one easily
observes that X ∈ HP,N if and only y = −x while X ∈ HP ′,N if and only if y = −x+1.

Definition 1.6.8. Let P, P ′, N,N ′ ∈ Rn with N ̸= 0 and N ′ ̸= 0. One defines the
angle θ between the hyperplanes HP,N and HP ′,N ′ as the angle between their normal
vectors, or more precisely

cos(θ) :=
N ·N ′

∥N∥∥N ′∥
.

From this definition, one observes that the angle between two parallel hyperplanes
is equal to 0.

Observation 1.6.9. Let P,N ∈ Rn with N ̸= 0.

(i) Since HP,N = HP,λN for any λ ∈ R∗, one has HP,N = HP,N̂ with N̂ := N
∥N∥ . Note

that N̂ is a unit vector (see Definition 1.4.1).

(ii) The hyperplane HP,N divides Rn into two distinct regions. Indeed, for any X ∈ Rn

one has either X ·N > P ·N , or X ·N = P ·N or X ·N < P ·N . In the second
case, X belongs to HP,N by definition of this hyperplane. Thus, one is left with
the other two regions {X ∈ Rn | X · N > P · N} or {X ∈ Rn | X · N < P · N}
and these two regions have an empty intersection.
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Question: What is the distance between a point X and a hyperplane HP,N?
The natural definition for such a notion can be understood as follows: Consider any

point Y ∈ HP,N and recall that the distance d(X, Y ) between X and Y has been defined
in Definition 1.4.5. Then, the distance d(X,HP,N) between X and the hyperplane HP,N

should be the minimal distance between X and any point Y ∈ HP,N , namely

d(X,HP,N) := inf
Y ∈HP,N

d(X, Y ),

where the notation inf has to be read ”infimum”. In the next Lemma, we give an
explicit formula for this distance.

Lemma 1.6.10. For any P,N,X ∈ Rn with N ̸= 0 one has

d(X,HP,N) =
|(X − P ) ·N |

∥N∥
.

Proof. First of all, observe that if X ̸∈ HP,N , there exists λ ∈ R∗ such that X ·N −λ =
P ·N . In fact, one simply has λ = X ·N − P ·N = (X − P ) ·N . In addition, observe
that

X ·N − λ = P ·N ⇔ X ·N − λ
N ·N
∥N∥2

= P ·N ⇔
(
X − λ

∥N∥
N

∥N∥

)
·N = P ·N

which means that X − λ
∥N∥

N
∥N∥ belongs to HP,N if λ = (X − P ) ·N .

From this observation, one infers that X ′ := X − (X−P )·N
∥N∥

N
∥N∥ ∈ HP,N and that

d(X,X ′) = ∥X ′ −X∥ =
∥∥∥− (X − P ) ·N

∥N∥
N

∥N∥

∥∥∥ =
|(X − P ) ·N |

∥N∥
.

As a consequence, one has d(X,HP,N) ≤ |(X−P )·N |
∥N∥ .

In order to show that this distance is the shortest one, consider any Y ∈ HP,N

and use the general Pythagoras theorem for the right triangle of vertices X,Y and X ′.

Indeed, since
−−→
X ′Y ⊥

−−→
X ′X (because Y ∈ HX′,N and X −X ′ = (X−P )·N

∥N∥2 N) one gets:

d(X, Y )2 = ∥Y −X∥2 = ∥Y −X ′∥2 + ∥X ′ −X∥2 ≥ ∥X ′ −X∥2 = d(X,X ′)2

from which one infers that d(X,Y ) ≥ d(X,X ′).

Question: What are the intersections of hyperplanes? More precisely, can we find
X ∈ Rn such that

X ∈ HP1,N1 ∩HP2,N2 ∩ · · · ∩HPm,Nm ? (1.6.1)

Obviously, if some hyperplanes are parallel, there does not exist any X satisfying this
condition. Even if the hyperplanes are not parallel, is it possible that the intersection
is empty? Before answering these questions, recall once more that

X ∈ HP,N ⇔ n1x1 + n2x2 + · · ·+ nnxn =
n∑

j=1

pjnj.

and therefore equation (1.6.1) corresponds to a system of linear equations, as we shall
see in the sequel.
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1.7 Exercises

Exercise 1.1. Compute A + B, A − B, 3A and −2B in each of the following cases,
and illustrate your result with the geometric interpretation.

1. A = (2,−1), B = (−1, 1)

2. A = (2,−1, 5), B = (−1, 1, 1)

3. A = (π, 3,−1), B = (2π,−3, 7)

Exercise 1.2. Let A = (1, 2) and B = (3, 1). Compute A + 2B, A − 3B and A + 1
2
B

and provide the geometric interpretation.

Exercise 1.3. Write the proofs for Properties 1.1.4.

Exercise 1.4. In the following cases, determine which located vectors
−→
PQ and

−→
AB are

equivalent.

1. P = (1,−1), Q = (4, 3), A = (−1, 5), B = (5, 2)

2. P = (1, 4), Q = (−3, 5), A = (5, 7), B = (1, 8)

3. P = (1,−1, 5), Q = (−2, 3,−4), A = (3, 1, 1), B = (0, 5, 10)

4. P = (2, 3,−4), Q = (−1, 3, 5), A = (−2, 3,−1), B = (−5, 3, 8)

Similarly, determine if the located vectors
−→
PQ and

−→
AB are parallel.

1. P = (1,−1), Q = (4, 3), A = (−1, 5), B = (7, 1)

2. P = (1, 4), Q = (−3, 5), A = (5, 7), B = (9, 6)

3. P = (1,−1, 5), Q = (−2, 3,−4), A = (3, 1, 1), B = (−3, 9,−17)

4. P = (2, 3,−4), Q = (−1, 3, 5), A = (−2, 3,−1), B = (−11, 3,−28)

Exercise 1.5. Compute A · A and A ·B for the following vectors.

1. A = (2,−1), B = (−1, 1)

2. A = (2,−1, 5), B = (−1, 1, 1)

3. A = (π, 3,−1), B = (2π,−3, 7)

4. A = (1,−1, 1), B = (2, 3, 1)

Which pairs of vectors are perpendicular?

Exercise 1.6. Write the proofs for Properties 1.3.2.
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Exercise 1.7. By using the properties of the previous exercise, show the following
equalities (we use the notation A2 for A · A).

1. (A+B)2 = A2 + 2A ·B +B2

2. (A−B)2 = A2 − 2A ·B +B2

Exercise 1.8. Write the proofs for Properties 1.4.4.

Exercise 1.9. Write a proof for Theorem 1.4.9.

Exercise 1.10. Let us consider the pair (A,B) of elements of Rn.

1. A = (2,−1), B = (−1, 1)

2. A = (−1, 3), B = (0, 4)

3. A = (2,−1, 5), B = (−1, 1, 1)

For each pair, compute the norm of A, the norm of B, and the orthogonal projection of
A along B.

Exercise 1.11. Find the cosine between the following vectors A and B :

1. A = (1, 2), B = (5, 3)

2. A = (1,−2, 3), B = (−3, 1, 5)

Exercise 1.12. Determine the cosine of the angles of the triangle whose vertices are
A = (2,−1, 1), B = (1,−3,−5) and C = (3,−4,−4).

Exercise 1.13. Let A1, . . . , Ar be non-zero vectors of Rn which are all mutually per-
pendicular, or in other words Aj · Ak = 0 if j ̸= k. Let c1, . . . , cr be real numbers such
that

c1A1 + c2A2 + · · ·+ crAr = 0.

Show that cj = 0 for all j ∈ {1, 2, . . . , r}.

Exercise 1.14. Find a parametric representation of the line passing through A and B
for

1. A = (1, 3,−1), B = (−4, 1, 2)

2. A = (−1, 5, 3), B = (−2, 4, 7)

Exercise 1.15. If P and Q are arbitrary points in Rn, determine the general formula
for the midpoint of the line segment between P and Q.

Exercise 1.16. Write the proofs for Properties 1.6.4.
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Exercise 1.17. Determine the cosine of the angle between the two planes defined by

{(x, y, z) ∈ R3 | 2x− y + z = 0} and {(x, y, z) ∈ R3 | x+ 2y − z = 1}.

Same question for the planes defined by

{(x, y, z) ∈ R3 | x = 1} and {(x, y, z) ∈ R3 | 3x+ 2y − 7z = 1}.

Exercise 1.18. Find the equation of the plane in R3 passing through the three points
P1 = (1, 2,−1), P2 = (−1, 1, 4) and P3 = (1, 3,−2).

Exercise 1.19. Let P = (−1, 1, 7), Q = (1, 3, 5) and N = (−1, 1,−1). Determine the
distance between the point Q and the plane HP,N .

Exercise 1.20. Let P = (1, 1, 1), Q = (1,−1, 2) and N = (1, 2, 3). Find the intersection
of the line passing through Q and having the direction N with the plane HP,N .

Exercise 1.21. Determine the equation of the hyperplane in R4 passing through the
point (1, 1, 1, 1) and which is parallel to the hyperplane defined by

{(x1, x2, x3, x4) ∈ R4 | 1x1 + 2x2 + 3x3 + 4x4 = 5}.

Similarly, for any n > 1 determine the equation of the hyperplane in Rn passing through
the point (1, 1, . . . , 1) and which is parallel to the hyperplane defined by

{
(x1, x2, . . . , xn) ∈ Rn |

n∑
j=1

j xj = n+ 1
}
.

Does something special happen for n = 2?



24 CHAPTER 1. GEOMETRIC SETTING


