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4.4 Itô’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
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Motivation

Our aim is to develop tools for the study of very irregular functions or curves and for their predictions. The
two leading applications are the Brownian motion and the Black-Scholes model. Figures 1 and 2 are typical
examples of curves that should be understood and described with the content of this course.

These notes and the corresponding course have been mainly inspired by the book [1], with additional material
borrowed from [2], [6], and [13]. Other references will be mentioned on due time. The probability part is
based on [8].

Figure 2: Exchange rate: Japanese yen - US dollar (y-axis gives the value in dollar of 1 yen, as a function of
time) over different periods of time
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Chapter 1

Mathematical Background

This chapter contains the mathematical background necessary for the understanding of concepts in stochastic
calculus.

1.1 Probability and Random Variables

The aim of this section is to describe and quantify any non-predictable experiment. We give a framework
suitable for many applications.

Definition 1.1.1 (Measurable space). A measurable space (Ω,F ) is a setΩ together with a collection of subsets
F closed under complement, countable unions and countable intersections: if A ∈ F , Ac := Ω\A ∈ F , if
{A j} j∈N ⊂ F , then ∪ jA j ∈ F and ∩ jA j ∈ F . One also says that F is a σ-algebra.

Note that we always assume F to be non-empty, which means that there exists at least one element A ∈ F . In
this case, Ac also belongs to F , and A ∪ Ac = Ω and A ∩ Ac = Ø are also elements of F .

Exercise 1.1.2. Prove this statement: if F is a collection of subsets which is closed under complement and
countable unions, then it is closed under countable intersections.

An example of a measurable space is the usual space RN together with the family of sets generated by intervals
by considering countable unions, intersections, and complements. In this case, one speaks about the Borel
σ-algebra σB. Thus, (RN , σB) is the most common measurable space, and one usually denotes it simply by
RN . An other example of a measurable space is provided by Ω = {λ1, . . . , λN} a finite set and F the power set
of Ω consisting of all subsets of Ω. Two standard examples are

Ω = {heads, tails} or Ω =
{
1 ,2 ,3 ,4 ,5 ,6

}
.

This second example can also be extended to an infinite set, like for example Ω = N or Ω = Z, also endowed
with their respective power set.

Exercise 1.1.3. If Ω contains N elements, how many elements does its power set contain ? Provide an easy
and understandable description of this power set.

Definition 1.1.4 (Measurable function). For two measurable spaces (Ω,F ) and (Λ,E), a function f : Ω→ Λ
is measurable if for any A ∈ E, the set

f −1(A) :=
{
ω ∈ Ω | f (ω) ∈ A

}
3



belongs to F .

In simpler words, the function f is measurable if it transports back the structure of (Λ,E) to the structure
of (Ω,F ). The set f −1(A) is called the pre-image of A by f , and it does not mean that f is injective. The
measurability requirement is a very weak assumption, but it is usually the minimum requirement for being
able to do anything with a function between two measurable spaces.

Let us now add one more structure on the measurable space (Ω,F ).

Definition 1.1.5 (Probability space). A probability space (Ω,F ,P) consists of a measurable space (Ω,F ) and
a function P : F → [0, 1] satisfying P(Ω) = 1, P(Ø) = 0 and

P
(⋃

j∈N

A j
)
=

∑
j∈N

P(A j)

whenever A j ∩ Ak = Ø ∀ j , k. We call Ω the sample space, F the event space, ω ∈ Ω an elementary event
and A ∈ F an event, and finally P the probability measure.

The function P should be thought at a way to measure the size of the elements of F , or as a way to weight
them.

Exercise 1.1.6. If (Ω,F ,P) is a probability space and if A, B ∈ F , check that

1) P(Ac) = 1 − P(A), where Ac := Ω \ A,

2) P(A ∪ B) = P(A) + P(B) − P(A ∩ B),

3) If A ⊂ B, then P(A) ≤ P(B).

The following statement will often be used, and is related to the monotone convergence theorem.

Lemma 1.1.7 (Continuity of probability). Let (Ω,F ,P) be a probability space and consider {A j} j∈N ⊂ F . If
A j ⊂ A j+1 for any j, then

P
(⋃

j∈N

A j
)
= lim

j→∞
P(A j),

while if A j ⊃ A j+1 for any j, then
P
(⋂

j∈N

A j
)
= lim

j→∞
P(A j).

The proof is left as an exercise, or can be found in [1, Lem. 1.4].

Usually, Ω is very complicated or unknown. Functions defined on Ω are more important than Ω itself. The
following definition is a very general one, but in applications the measurable space (Λ,E) will be chosen
conveniently.

Definition 1.1.8 (Random variable). Consider a probability space (Ω,F ,P) and a measurable space (Λ,E).
A random variable X is a measurable function from (Ω,F ) to (Λ,E). Namely, X is a function satisfying, for
any A ∈ E, {

ω ∈ Ω | X(ω) ∈ A
}
≡ X−1(A) ∈ F . (1.1.1)

Usually, we choose a measurable space (Λ,E) which is much simpler than the initial measurable space (Ω,F ).
Note that in the special case Λ = RN , or more precisely if we consider (Λ,E) = (RN , σB), then (1.1.1) is
satisfied if X = (X1, . . . , XN) verifies{

ω ∈ Ω | X j(ω) ≤ x j ∀ j = 1, . . . ,N
}
∈ F
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for any (x1, . . . , xN) ∈ RN . The special case N = 1 corresponds to a univariate random variables, while
N > 1 corresponds to a multivariate random variables, also called random vectors or vector valued random
variables.

So far we have not used probability measure P in the previous definition. The interest of the previous definition
is coming in the notion of induced probability measure, a new measure on Λ.

Definition 1.1.9 (Induced probability measure). When X : Ω → Λ is a random variable from a probability
space (Ω,F ,P) to a measurable space (Λ,E), the map µX : E → [0, 1] defined for any A ∈ E by

µX(A) = P
(
{ω ∈ Ω | X(ω) ∈ A}

)
= P

(
X−1(A)

)
≡ P(X ∈ A)

is called the induced probability measure. µX is also called the law of X, and we write X ∼ µX for this
correspondence.

It is important to observe that µX is defined on the image of Ω, which can be considered as the set of outcomes
of X. Usually, µX is much simpler than X, since it is defined on (Λ,E), as for example on (RN , σB), and not on
(Ω,F ). The term probability distribution is often used instead of probability measure, but this terminology is
less precise since it also refers to other concepts. Let us mention that there exist two principal types of random
variables (but others also exist).

Definition 1.1.10 (Absolutely continuous random variable). The random variable X : Ω → RN is absolutely
continuous if the induced probability measure is absolutely continuous with respect to the Lebesgue measure,
namely if there exists a (measurable) function ΠX : RN → R+ satisfying for any A ∈ σB

µX(A) =
∫

A
ΠX(x)dx.

The function ΠX is called the probability density function, or simply the pdf.

Definition 1.1.11 (Discrete valued random variable). The random variable X : Ω → Λ is discrete valued if
X(Ω) = {X(ω) | ω ∈ Ω} is finite or countable. In this case, we define the function pX : X(Ω)→ [0, 1] by

pX(x) := P
(
X−1({x}))

for any x ∈ X(Ω). The function pX is called the the probability mass function, or simply pmf.

In these two situations, we still write X ∼ ΠX or X ∼ pX . It is clear that the following properties hold:∫
RN ΠX(x)dx = 1 and

∑
x∈X(Ω) pX(x) = 1. Observe also that for any absolutely continuous random variable X,

one has µX(x) = 0 for any x ∈ RN while ΠX(x) ∈ R+ for (almost every) x ∈ RN .

Remark 1.1.12. Any function Π : RN → R+ satisfying
∫
Π(x)dx = 1, or any function p from a finite set or a

countable set Λ to [0, 1] satisfying
∑

x p(x) = 1, defines the pdf or the pmf of a random variable. However, in
such a situation we don’t have the probability space (Ω,F ,P), we just have the law. It means that we have a
rule to associate a weight to any subset of the set of outcomes, but we don’t know the underlying probability
space (Ω,F ,P) (if necessary, such a probability space can be constructed, but it is somewhat artificial).
Nevertheless, we shall say that Π or p define a random variable X with induced probability measure Π or p,
and refer to Π and p as a probability distribution.

Exercise 1.1.13 (Classical probability distributions). Recall the definition of a few classical probability distri-
butions, and recast them in the framework and with the terminology introduced above. For example, consider
the Bernoulli distribution, the binomial distribution, the Poisson distribution, the uniform distribution, the
exponential distribution, etc.
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In the important case of univariate random variable, namely when (Λ,E) = (R, σB), one more function can be
defined.

Definition 1.1.14 (Cumulative distribution function). Let X be a random variable on a probability space
(Ω,F ,P) taking values in (R, σB). The cumulative distribution function FX is defined for any x ∈ R by

FX(x) := P(X ≤ x) ≡ P
({
ω ∈ Ω | X(ω) ≤ x

})
.

One easily observes that limx→−∞ FX(x) = 0 while limx→∞ FX(x) = 1. The function FX is also increasing and
right-continuous, meaning that limε↘0 FX(x + ε) = FX(x), but it is not left-continuous in general. Note also
that this function can be defined because there exists an order on R, which means that the notation X(ω) ≤ x
is meaningful. In an arbitrary measurable space (Λ,E), this notion would be meaningless.

Exercise 1.1.15. Prove the above statements for the cumulative distribution function, and provide a example
of a cumulative distribution function which is not left-continuous.

Exercise 1.1.16. For the classical probability distributions mentioned in Exercise 1.1.13, determine the cu-
mulative distribution function.

1.2 Expectation

Let (Ω,F ,P) be a probability space, and let (Λ,E) and (Ξ,G) be two measurable spaces. Let X : Ω→ Λ be a
random variable, and consider f : Λ→ Ξ be a measurable function, as introduced in Definition 1.1.4. Then it
is easy to check that the composition f ◦ X : Ω→ Ξ defines a new random variable, simply denoted by f (X).

For the following definition, we shall consider only some special instances of measurable spaces. More
precisely let us call standard a measurable space (Ξ,G) with Ξ either a finite or a countable subset of RN

endowed with their power set, or (R, σB), or (RN , σB), or the set Mn×m(R) of n × m matrices with entries in R
(since Mn×m(R) can be identified with Rnm, it is also a measurable space with a suitable Borel σ-algebra).

Definition 1.2.1 (Expectation). Let (Ω,F ,P) be a probability space, let (Λ,E) and (Ξ,G) be measurable
spaces and assume (Ξ,G) be standard, let X : Ω → Λ be a random variable, and let f : Λ → Ξ be a
measurable function. The expectation of f (X) is defined by (the Lebesgue type integral)

E
(
f (X)

)
:=

∫
Λ

f (x) µX(dx). (1.2.1)

Note that when writing such an expression, we assume that it exists even with f replaced by | f | (absolute
convergence of the integral). If the measurable space (Λ,E) is standard and equal to (Ξ,G), and if f denotes
the identity function id with id(x) = x, then we simply write E(X) for E

(
id(X)

)
, and call it the mean value of

X, of the expectation of X.

In many cases, the above integral reduces to a more standard Riemann integral. Thus, we can keep in mind a
limit of Riemann sum for this r.h.s. of (1.2.1).

Exercise 1.2.2. Specialize the formula (1.2.1) for any absolutely continuous random variable, as presented
in Definition 1.1.10, or for a discrete valued random variable, as presented in Definition 1.1.11, when Λ ⊂ R.

Exercise 1.2.3. Why is E(X) not well defined if X is a random variable from a probability space (Ω,F ,P) to
an arbitrary measurable space (Λ,E), why do we consider only standard measurable spaces ? Is there a more
general framework ?
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In addition to the expectation, many standard quantities can be associated with a random variable taking values
in R.

Definition 1.2.4 (Variance, standard deviation, moments, moment generating function). Let (Ω,F ,P) be a
probability space, and let X be a univariate random variable defined on it. The variance of X is defined by

Var(X) := E
((

X − E(X)
)2
)
,

the standard deviation of X is defined by the square root of the variance, the n-moment of X are defined by
E(Xn), and the moment generating function by the function a 7→ E(eaX).

In the framework of Definition 1.2.1, the variance corresponds to the function f given by x 7→
(
x−E(X)

)2, the
moments to the functions x 7→ xn, and the moment generation function to the function x 7→ eax. Obviously,
these quantities exist only if the corresponding integrals (or sums) converge absolutely. For completeness, we
also recall that if the moment generating function E(eaX) exists for all a with |a| < δ for some δ > 0, then this
function defines uniquely the univariate random variable X, see for example [8, Thm. 7.55].

For any measurable space (Λ,E) and for any A ∈ E, we define the indicator function 1A by 1A(x) = 1 if x ∈ A
and 1A(x) = 0 if x < A. Thus, 1A : Λ → R is a measurable function, and one observes that the following
equalities hold:

P(X ∈ A) ≡ P
({
ω ∈ Ω | X(ω) ∈ A

})
= µX(A) =

∫
A
µX(dx) =

∫
Λ

1A(x) µX(dx) = E
(
1A(X)

)
.

Exercise 1.2.5. For σ > 0 and x̄ ∈ R set Π : R→ R+ by

Π(x) :=
1
√

2πσ
exp

(
−

1
2σ2 (x − x̄)2

)
.

Check that
∫
Π(x)dx = 1. In the framework of Reminder 1.1.12 we write X = N(x̄, σ2) for the corresponding

univariate random variable, called Gaussian random variable. Check that E(X) = x̄, and Var(X) = σ2.

More generally, for x̄ ∈ RN and P ∈ MN×N(R) with P > 0, set Π : RN → R+ with

Π(x) :=
1

(2π)N/2|P|1/2
exp

(
−

1
2

(x − x̄)T P−1(x − x̄)
)
,

with |P| := det(P). Check that
∫
Π(x) dx = 1. We write X = N(x̄, P) for the corresponding multivariate

random variable, called N-dim Gaussian random variable or Gaussian vector. Check that E(X) = x̄, and that
P = E

(
(X − x̄)(X − x̄)T

)
. Here, P is called the covariance matrix.

Exercise 1.2.6. If X : Ω → RN is absolutely continuous with pdf ΠX and if ϕ : RN → RN is bijective and
C∞, show that Y := ϕ(X) : Ω → RN is a new absolutely continuous random variable, with pdf ΠY given by
ΠY (y) = ΠX

(
ϕ−1(y)

)
|Jϕ−1(y)|. Here, |Jϕ−1(y)| denotes the determinant of the Jacobian matrix of ϕ−1.

Let us close this section with a few inequalities computed with the expectation. These inequalities hold for
univariate random variables.

Lemma 1.2.7 (Markov’s inequality). Let (Ω,F ,P) be a probability space, and let X : Ω → R be a non-
negative random variable (meaning that X(ω) ≥ 0 for all ω ∈ Ω). Then for any a > 0 the following inequality
holds:

P(X > a) ≡ P
(
{ω ∈ Ω | X(ω) > a}

)
≤

1
a
E(X).

7



The proof of this inequality is left as an exercise. Also the following two inequalities can be deduced from it.

Corollary 1.2.8. Let (Ω,F ,P) be a probability space, and let X : Ω→ R be a random variable. Then for any
a > 0 the following inequalities hold:

P(|X| > a) ≤
1
a2E

(
|X|2

)
Chebyshev’s inequality,

and for any λ > 0
P(X > a) ≤ e−λaE

(
eλX

)
Chernoff’s bound.

1.3 Independence

In this section, we consider families of random variables. These random variables will be denoted generically
by {X j} j since each of them could be a multivariate random variable, and therefore have N components:
X j = (X j

1, X
j
2, . . . , X

j
N)T . When each random variable is univariate (which means that it takes values in R) then

we shall simply write X j for X j.

Consider now two measurable spaces (Λ1,E1) and (Λ2,E2), and two random variables X1 : Ω → Λ1 and
X2 : Ω→ Λ2 defined on the same probability space (Ω,F ,P). The induced probability measures are denoted
by µX1 and µX2 . Set Z = (X1, X2) : Ω → Λ1 × Λ2 with Λ1 × Λ2 =

{
(x1, x2) | x1 ∈ Λ1, x2 ∈ Λ2}. The set

Λ1 ×Λ2 is endowed with the σ-algebra generated by boxes A1 × A2 =
{(

x1, x2) | x1 ∈ A1 and x2 ∈ A2} for any
A1 ∈ E1 and A2 ∈ E2. This σ-algebra is denoted by E1 ×E2. The induced probability measure µZ is called the
joint probability measure. By definition, for any set A ∈ E1 × E2, one has

P
({
ω ∈ Ω |

(
X1(ω), X2(ω)

)
∈ A

})
= µZ(A) =

∫
A
µZ

(
dx1 × dx2) = ∫

Λ1×Λ2
1A

(
x1, x2)µZ

(
dx1 × dx2).

The following equalities then hold:

µX1(A1) = µZ(A1 × Λ2) and µX2(A2) = µZ(Λ1 × A2)

for any A1 ∈ E1 and A2 ∈ E2. The probability measures µX1 and µX2 are called the marginal measures of µZ .

Remark 1.3.1. If X j : Ω→ RN j for j ∈ {1, 2} and if we assume that the joint probability measure is absolutely
continuous, with pdf denoted by Π(X1,X2), then the marginal pdfs are given by

ΠX1
(
x1) = ∫

RN2
Π(X1,X2)

(
x1, x2)dx2 and ΠX2

(
x2) = ∫

RN1
Π(X1,X2)

(
x1, x2)dx1.

Still for X j : Ω→ RN j but without assuming the absolute continuity we define the cross-covariance matrix

Cov
(
X1, X2) := E

((
X1 − E

(
X1)) (X2 − E

(
X2))T

)
∈ MN1×N2(R).

In particular, for X : Ω → RN the covariance matrix is given by Cov(X) := Cov(X, X) ∈ MN×N(R). In the
special case N1 = N2 = 1 (a univariate random variable), the correlation coefficient is defined by

Corr (X1, X2) :=
E
((

X1 − E
(
X1

))(
X2 − E

(
X2

)))√
E

((
X1 − E(X1)

)2
)
· E

((
X2 − E(X2)

)2
) ∈ [−1, 1]. (1.3.1)

When Corr(X1, X2) = 0 we say the two univariate random variables are uncorrelated. Observe that even if it
is not written explicitly, all these expressions are computed with the joint probability measure.
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Exercise 1.3.2. Check that the covariance matrix Cov(X) is symmetric and positive semi-definite, namely it
satisfies aT Cov(X)a ≥ 0 for any a ∈ RN with a , 0.

The covariance matrix is also playing an important role when families of univariate random variables are
considered. More precisely, let us consider N univariate random variables X1, . . . , XN on the same probability
space (Ω,F ,P). One then observes that any linear combination a1X1 + a2X2 + · · · + aN XN for a j ∈ R also
defines a univariate random variable on the probability space (Ω,F ,P). If we set X := (X1, . . . , XN)T for
the vector valued random variable defined on (Ω,F ,P), then this linear combination is nothing but f (X) for
f (x) :=

∑N
j=1 a jx j for x = (x1, . . . , xN) ∈ RN . For the following statement we assume that all computed

quantities exist:

Proposition 1.3.3. Let {X j}
N
=1 be a family of univariate random variables defined on the same probability

space (Ω,F ,P), and let a = (a1, . . . , aN)T ∈ RN . Then the following equalities hold:

E
( N∑

j=1

a jX j
)
=

N∑
j=1

a jE(X j), (1.3.2)

Var
( N∑

j=1

a jX j
)
= aT Cov(X)a, (1.3.3)

where X = (X1, . . . , XN)T denotes the vector valued random variable made of X1, . . . , XN .

The proof of this proposition is left as an easy exercise. Still in the above framework, the joint moment
generating function is defined by the expression E(ea·X) if it exists for all a ∈ RN satisfying ∥a∥ < δ for some
δ > 0. The uniqueness result mentioned in Section 1.2 extends to this context:

Theorem 1.3.4. Let {X j}
N
j=1 be a family of univariate random variables X j : Ω → R, set X = (X1, . . . , XN)T ,

and assume that the joint moment generating function E(ea·X) exists for all a ∈ RN satisfying ∥a∥ < δ for some
δ > 0. Then this function defines uniquely the multivariate random variable X.

Exercise 1.3.5. Look for a reference book where the proof is given, and study this proof.

We now introduce the main definition of this section.

Definition 1.3.6 (Independence). Let (Ω,F ,P) be a probability space, and consider two random variables
X1 : Ω→ Λ1 and X2 : Ω→ Λ2. These random variables are independent if for any A1 ∈ E1, A2 ∈ E2 one has

µ(X1,X2)
(
A1 × A2) = µX1

(
A1) µX2

(
A2)

or equivalently
P(X1 ∈ A1, X2 ∈ A2) = P(X1 ∈ A1)P(X2 ∈ A2).

In the special case of absolutely continuous random variables X1 : Ω → RN1 and X2 : Ω → RN2 , the
independence of X1 and X2 is equivalent to the condition Π(X1,X2) = ΠX1ΠX2 , which means that the joint
measure is also absolutely continuous. The following notion plays a fundamental role in many applications of
probability.

Definition 1.3.7 (IID). Let (Ω,F ,P) be a probability space, and let (Λ,E) be a measurable space. A family of
random variables {X j} j with X j : Ω→ Λ is said to be independent and identically distributed (in short IID) if
they are all all independent and equally distributed (they share the same induced probability measure µX).

9



Observe that if the family is finite, namely {X j}Nj=1, then this family is IID if the joint probability measure
µ(X1,...,XN ) satisfies for any A j ∈ F

µ(X1,...,XN )(A
1 × . . . × AN) = µX1(A1) . . . µXN (AN) (1.3.4)

with all µX j equal. If the family is infinite, the equality (1.3.4) must hold for any finite subfamily of random
variables.

1.4 Univariate random variables

In this section, we consider univariate random variables define on the same probability space (Ω,F ,P). This
means that the random variables X we shall consider are measurable functions on Ω taking values on R. The
subsequent definitions complement the various notions introduced in Definition 1.2.4. We state the following
definition in the greatest generality, but the cases p = 1 and p = 2 will mainly be considered in the sequel.

Definition 1.4.1 (Lp-spaces on (Ω,F ,P)). Let (Ω,F ,P) be a probability space, and let p ≥ 1. We set
Lp(Ω,F ,P) for the set of all univariate random variables X on Ω satisfying E

(
|X|p

)
< ∞. For any X ∈

Lp(Ω,F ,P) we also set ∥X∥p :=
(
E
(
|X|p

))1/p
. The set of equivalent classes of elements of Lp(Ω,F ,P) are

denoted by Lp(Ω,F ,P).

Note that the random variables in L1(Ω,F ,P) are precisely the ones for which E(X) is well defined, as men-
tioned in Definition 1.2.1. The ones in L2(Ω,F ,P) correspond to the random variables for which the variance
is well defined. For X in L2(Ω,F ,P), we say that X is square-integrable.

Exercise 1.4.2. Show that Lp(Ω,F ,P) are vector spaces, and that ∥ · ∥p defines a norm on Lp(Ω,F ,P). Show
also that Lp2(Ω,F ,P) ⊂ Lp1(Ω,F ,P) whenever p2 ≥ p1.

The space L2(Ω,F ,P) has a nice geometric property: it is endowed with the scalar produced defined by the
map

L2(Ω,F ,P) × L2(Ω,F ,P) ∋ (X,Y) 7→ E(XY) ∈ R.

This scalar product satisfies the Cauchy-Schwarz inequality |E(XY)| ≤ ∥X∥2∥Y∥2, which leads directly to the
inequality

|Cov(X,Y)| ≤
√

Var(X)
√

Var(Y).

Clearly, this also leads to the correlation coefficient already introduced in (1.3.1).

Let us introduce a few more geometric concepts. For X,Y ∈ L2(Ω,F ,P) we set

X = X −
E(XY)
E(Y2)

Y +
E(XY)
E(Y2)

Y = X⊥ +
E(XY)
E(Y2)

Y, (1.4.1)

with X⊥ := X − E(XY)
E(Y2) Y , and easily observe that E(X⊥Y) = 0. The decomposition (1.4.1) can be seen as the

decomposition of X in a component parallel to Y , and a component perpendicular to Y . The random variable
E(XY)
E(Y2) Y is called the orthogonal projection of X onto Y .

As usual, any norm on a vector space allows us to define the distance between two elements with the expression
∥X − Y∥p for any X,Y ∈ Lp(Ω,F ,P). One can also define the notion of convergence.

Definition 1.4.3 (Lp-convergence of random variables). A sequence {X j} j∈N ⊂ Lp(Ω,F ,P) of univariate
random variables on the same probability space converges in the Lp-sense to the random variable X∞ if
∥X j − X∞∥p → 0 as j→ ∞.
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Note that Lp(Ω,F ,P) are Banach spaces, which ensures that the limit X∞ also belongs to Lp(Ω,F ,P) when-
ever the sequence converges (and even more generally when a Cauchy sequence is considered). When p = 2,
the L2-convergence is also called the mean square convergence, or the convergence in quadratic mean. The
following exercise uses the notion of convergence in L2(Ω,F ,P).

Exercise 1.4.4 (L2-version of the weak law of large numbers). Consider a family {X j} j∈N ⊂ L2(Ω,F ,P) of
univariate IID random variable with 0 mean value (or in other words with expectation 0). Show that the
empirical mean

S N :=
1
N

N∑
j=1

X j

converges to 0 in the L2-sense, or more precisely ∥S N∥2 → 0 as N → ∞.
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Chapter 2

Gaussian processes

The Gaussian probability distribution has been introduced in Exercise 1.2.5, and the corresponding random
variable is denoted by N(x, σ2) in the univariate case, and N(x, P) in the N-dimensional case. Here x stands
for the value in R or the vector in RN given by the expectation value of the corresponding random variable,
σ2 > 0 corresponds to the variance of N(x, σ2), and the Hermitian matrix P > 0 is the covariance matrix of
N(x, P). When x = 0 and σ = 1 (or P is the N × N identity matrix) one speaks about standard Gaussian
probability distribution, or standard Gaussian random variable. This distribution is going to play a central
role in this chapter. For simplicity, we simply say Gaussian random variable for univariate Gaussian random
variable, and say N-dimensional Gaussian random variable when N > 1. For convenience, we also introduce
an extension of the usual univariate Gaussian random variables, namely N(x, 0). This random variable is a
point mass on its mean x, or in other words it corresponds to the random variable taking the value x with a
probability 1. For example 0 = N(0, 0) is the random variable taking the value 0 with probability 1.

2.1 Gaussian vectors

We start with the main definition of this section.

Definition 2.1.1 (Gaussian vector). A N-dimensional random vector X = (X1, . . . , XN)T on a probability
space (Ω,F ,P) is said to be a Gaussian vector if for any a = (a1, . . . , aN)T ∈ RN the random variable
a · X :=

∑N
j=1 a j X j is a Gaussian random variable on (Ω,F ,P). In this case, we also say that the univariate

random variables X1, . . . , XN are jointly Gaussian.

Starting from a Gaussian vector X, we observe that each of its component X j is a Gaussian random variable,
by choosing a = e j with {e j}

N
j=1 the standard basis of RN . Conversely, let us check that IID standard Gaussian

random variables lead to a Gaussian vector.

Exercise 2.1.2. Check that if X1, X2 are independent and standard Gaussian random variables, then (X1, X2)T

is a Gaussian vector. Show that the random variable a1X1 + a2X2 is a Gaussian random variable with mean
0 and variance a2

1 + a2
2. Generalize your result for N independent and standard Gaussian random variables.

The following result can also be proved as an exercise, see also [1, Ex. 2.8].

Lemma 2.1.3. If X is a N-dimensional Gaussian vector and if M ∈ MN×N(R), check that the new vector MX
is also a N-dimensional random vector.
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The next statement provides an equivalent definition for a Gaussian vector. Its proof is based on Proposition
1.3.3 and on Theorem 1.3.4. Can you write it ?

Proposition 2.1.4. A N-dimensional random vector X is Gaussian if and only if its moment generating func-
tion E(ea·X) exists for all a ∈ RN and satisfies

E(ea·X) = exp
(
a · E(X) + 1

2 aT Cov(X)a
)
.

As already mentioned, each component of a Gaussian vector is a Gaussian distribution. It has also been shown
in Exercise 2.1.2 that N independent and standard Gaussian random variables lead to a Gaussian vector. The
following statement provides a criterion for the independence of the components of an arbitrary N-dimensional
Gaussian vector. Its proof is left as an exercise, see also [1, Prop. 2.10] for inspiration.

Proposition 2.1.5. Let X = (X1, . . . , XN)T be a N-dimensional Gaussian vector. Its covariance matrix Cov(X)
is diagonal if and only if the Gaussian random variables X1, . . . , XN are independent.

Before studying further the link between Gaussian vectors and the N-dimensional Gaussian random variable
introduced in Exercise 1.2.5, let us recall a result of linear algebra about positive definite and positive semi-
definite matrices. This result can be applied to the covariance matrix, see also Exercise 1.3.2.

Lemma 2.1.6 (Cholesky decomposition). For any positive definite matrix A ∈ MN×N(R), there exists a lower
triangular matrix L ∈ MN×N(R) with strictly positive diagonal entries satisfying

A = LLT .

If A is positive semi-definite, the entries on the diagonal can be 0. In the former case, the matrix L is invertible,
while in the latter case the matrix L is not invertible in general.

Let us emphasize that the matrix L is usually not unique, and that there exists several algorithm for computing
the matrix L. For example, one algorithm is based on a Gram-Schmidt type procedure, as for RN .

We shall now gather a few useful results about Gaussian vectors. Proofs are not difficult and can be found in
[1, Sec. 2.2] and worked out as exercises. They rely on Cholesky decomposition mentioned above. For their
statement, we need one more notion: A N-dimensional Gaussian vector X is non-degenerate if its covariant
matrix is invertible, namely if det

(
Cov(X)

)
, 0. Conversely, if det

(
Cov(X)

)
= 0, we say that the Gaussian

vector X is degenerate. Recall that 0 is the random variable taking the value 0 with probability 1.

Lemma 2.1.7. Let X = (X1, . . . , XN) be a N-dimensional Gaussian vector with mean value E(X) = 0 ∈ RN .
Then X is degenerate if and only if the Gaussian random variables X1, . . . , XN are linearly dependent, namely
if and only if there exists a ∈ Rn, a , 0 such that a · X = 0.

Exercise 2.1.8. Provide an example of a degenerate 3-dimensional Gaussian vector, and check the previous
lemma on this example.

Theorem 2.1.9 (Decomposition into IID Gaussian random variables). Let X be a N-dimensional and non-
degenerate Gaussian vector satisfying E(X) = 0 ∈ RN . Then there exists an invertible matrix L ∈ MN×N(R)
and N IID standard Gaussian random variables Z1, . . . ,ZN such that X = LZ, with Z = (Z1, . . . ,ZN)T .

As seen in Section 1.3, a family of univariate random variables define a joint probability measure. If this mea-
sure is absolutely continuous with respect to the Lebesgue measure, it defines a probability density function,
as emphasized in Definition 1.1.10. In these notes, we use the notation R+ for [0,∞).
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Corollary 2.1.10 (Joint probability density function). Let X be a N-dimensional and non-degenerate Gaus-
sian vector with expectation E(X) = x ∈ RN and covariance matrix Cov(X) = P ∈ MN×N(R). Then the joint
probability measure of X1, . . . , XN is absolutely continuous with respect to the Lebesgue measure, and the
corresponding probability density function Π : RN → R+ is given for x ∈ RN by

Π(x) :=
1

(2π)N/2|P|1/2
exp

(
−

1
2

(x − x̄)T P−1(x − x̄)
)
.

Exercise 2.1.11. Provide the joint density measure for three Gaussian random variables which are not linearly
independent.

2.2 Gaussian processes

In this section, we briefly introduce some of the main Gaussian processes. The presentation is slightly formal
since the precise definition of a stochastic process is not given yet. This section can be considered as a
motivation for the subsequent developments.

We consider a fixed probability space (Ω,F ,P), a fixed measurable space (Λ,E), and let t denote the time. If
t ∈ N, we speak about a discrete time model, while if t ∈ [0,T ] with T > 0, or if t ∈ R+, we speak about a
continuous time model. In general, we shall simply consider t ∈ T , with T a subset of R. The main object for
describing the evolution of a system consists in the family

X := (Xt)t∈T with Xt : Ω→ Λ a random variable. (2.2.1)

Clearly, X can also be seen as a function of two variables, namely

X : T ×Ω ∋ (t, ω) 7→ X(t, ω) := Xt(ω) ∈ Λ.

We shall come back to this notion in the following sections, and the resulting object will be a stochastic
process. Still, one can have another look at the previous object: For fixed ω ∈ Ω the map T ∋ t 7→ X(t, ω) ∈ Λ
can be seen as a trajectory or as a path in Λ. These different points of view will complement each other.

In the next definition we consider a finite family {t1, t2, . . . , tN} ⊂ T . For this definition it does not matter if T
is a discrete set or a continuous set. We can also observe that the regularity condition not specified above does
not play any role. Note that the following examples are all taking place in a 1-dimensional space, mainly for
simplicity.

Definition 2.2.1 (Gaussian process). The family X := (Xt)t∈T with each Xt a univariate random variable on
the probability space (Ω,F ,P) is a Gaussian process if for any finite family {t1, t2, . . . , tN} ⊂ T with t j < t j+1

the N-dimensional vector
(
Xt1 , Xt2 , . . . , XtN

)T is a Gaussian vector 1(in the sense of Definition 2.1.1).

In particular, as seen in Proposition 2.1.4, the Gaussian vector
(
Xt1 , Xt2 , . . . , XtN

)
is uniquely defined by its

mean value and by its covariance matrix. In the sequel, we list some famous Gaussian processes. As already
mentioned, the presentation is slightly informal, but nevertheless informative. Nice illustrations of these
processes can be found in [1, Sec. 2.3], or can be realized as exercises, see [1, Numerical projects p. 45].

Example 2.2.2 (Brownian process). The Brownian process B := (Bt)t∈R+ corresponds to a Gaussian process
with E(Bt) = 0 and Cov(Bt, Bs) ≡ E(BtBs) = t ∧ s, where t ∧ s stands for the minimum between s and t.
Additional properties will be imposed and studied subsequently.

1Some authors require the vector to be non-degenerate, some not. If non-degeneracy is imposed, a characterization of the Gaussian
process in terms of the joint probability measure of Corollary 2.1.10 is possible.
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Example 2.2.3 (Brownian process with drift). Let σ > 0 be called the volatility or the diffusion coefficient,
and let µ ∈ R be called the drift. Let Xt := σBt + µt be the random variable based on the Brownian
process introduced in Example 2.2.2. Then X := (Xt)t∈R+ is a Gaussian process which satisfies E(Xt) = µt and
Cov(Xt, Xs) = σ2(t ∧ s).

Example 2.2.4 (Brownian bridge). The Gaussian process Z := (Zt)t∈[0,1] whose mean value satisfies E(Zt) = 0
and whose covariance satisfies Cov(Zt,Zs) = s(1 − t) for 0 ≤ s ≤ t ≤ 1, is called the Brownian bridge. By
construction one has Z0 = 0 and Z1 = 0. This process can be realized by setting for t ∈ [0, 1]

Zt := Bt − tB1

where (Bt)t∈[0,1] is (part of) the Brownian process introduced in Example 2.2.2.

Example 2.2.5 (Fractional Brownian process). For H ∈ (0, 1), called Hurst index, the fractional Brownian
process is the Gaussian process BH := (BH

t )t∈R+ satisfying E(BH
t ) = 0 and

Cov(BH
t , B

H
s ) =

1
2
(
t2H + s2H − |t − s|2H)

.

Note that the special case H = 1
2 corresponds to the Brownian process.

Example 2.2.6 (Ornstein-Uhlenbeck process). The Ornstein-Uhlenbeck process Y := (Yt)t∈R+ corresponds
to the Gaussian process starting at Y0 = 0 with mean value satisfying E(Yt) = 0 and covariance given by
Cov(Yt,Ys) = e−(t−s)

2
(
1 − e−2s) for s ≤ t. If Y0 is random and satisfies Y0 = N

(
0, 1

2
)
, then Cov(Yt,Ys) = e−(t−s)

2 .

Later, we shall see that these processes are solutions of some stochastic differential equations.

2.3 Stochastic processes

In this section we provide the precise definition of a stochastic process, and some general notions. Note that
this section is independent of the Gaussian processes mentioned in the title of this chapter, since stochastic
processes more general than Gaussian processes.

Before the main definition of this section, we start with a slightly technical notion. Throughout the section,
the set T denotes a subset of R, and t ∈ T is used for a parameter representing the time.

Definition 2.3.1 (Filtration). Let (Ω,F ,P) be a probability space. A filtration (Ft)t∈T is a family of σ-
subalgebras of F satisfying Fs ⊂ Ft whenever s ≤ t.

In other words, Ft is a subset of F which also satisfies the condition of Definition 1.1.1, and Ft contains more
elements than Fs whenever s ≤ t. Observe that Ft containing more subsets of Ω than Fs means also that Ft is
more “precise” than Fs, or can provide more accurate information. Later on, Ft will be thought as the amount
of information available at time t.

Definition 2.3.2 (Stochastic process). A stochastic process consists of the tuple

X :=
(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
with (Ω,F ,P) a probability space, (Ft)t∈T a filtration, and (Xt)t∈T a family of random variables on Ω, taking
values in a measurable space (Λ,E), and Xt is measurable with respect to Ft.
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Let us recall that the notion of measurable function has been provided in Definition 1.1.4: X : Ω → Λ is
measurable if X−1(A) ∈ F for any A ∈ E. Thus, one observes that the measurability of Xt with respect to
Ft is a stronger assumption: since Ft contains less elements than F , having X−1

t (A) in Ft is less likely than
having X−1

t (A) in F . In the present situation, we also say that (Xt)t∈T is adapted to the filtration (Ft)t∈T . Note
that there exists a minimal filtration, also called natural filtration. Namely, let us set σ(Xs) for the smallest
σ-subalgebra of F which contains X−1

s (A) for all A ∈ E. We can then define Gt as the smallest σ-subalgebra
of F containing σ(Xs) for all s ∈ T with s ≤ t. Equivalently, Gt corresponds to the smallest σ-subalgebra of
F containing all elements X−1

s (A) for all A ∈ E and s ∈ T with s ≤ t. Then (Gt)t∈T is adapted to (Xt)t∈T and
is called the natural filtration. Any other adapted filtration must contain it.

Note that in general ∪t∈TFt is not a σ-algebra. If necessary, we can consider FT , the smallest σ-subalgebra of
F containing all Ft for t ∈ T . Usually, FT is strictly contained in F . There is still one filtration which might
be useful, the augmented natural filtration

(
Gt

)
t∈T and defined for any t ∈ T as the smallest σ-subalgebra

of F containing Gt and all negligible events of F , namely any B ∈ F satisfying P(B) = 0. The addition
of the negligible events is an important trick for the various notions of equivalences of stochastic processes2.
For example, the stochastic processes

(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
and

(
Ω,F ,P, (Ft)t∈T , (Yt)t∈T

)
are versions or

modifications of one another if for any t ∈ T , P
(
Xt = Yt

)
= 1, or more precisely if for any t ∈ T

P
(
{ω ∈ Ω | Xt(ω) = Yt(ω)

})
= 1.

Equivalently, if we set Nt := {ω ∈ Ω | Xt(ω) , Yt(ω)}, then the previous condition reads P(Nt) = 0. However, if
we set N := ∪t∈TNt, then it may happen in the continuous time setting that P(N) , 0, since N is then given by
an uncountable union. With this notation we say that

(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
and

(
Ω,F ,P, (Ft)t∈T , (Yt)t∈T

)
are indistinguishable if P(N) = 0. Equivalently, this condition reads

P
({
ω ∈ Ω | ∃t ∈ T with Xt(ω) , Yt(ω)

})
= 0.

Note that in the discrete time setting, these two notions coincide.

So far, we have not imposed any regularity condition for the stochastic process X. By considering again the
function of two variables

T ×Ω ∋ (s, ω) 7→ Xs(ω) ∈ Λ

we could require the measurability of this map, from
(
T ×Ω, σ(T ) ×F

)
to (Λ,E), where we denote by σ(T )

the σ-subalgebra of σB generated by the Borel sets of T . However, this notion does not use the filtration. The
right notion is the following:

Definition 2.3.3 (Progressively measurable). The stochastic process X is progressively measurable if for any
t ∈ T the map

T ∩ [0, t] ×Ω ∋ (s, ω) 7→ Xs(ω) ∈ Λ

is measurable from
(
T ∩ [0, t] ×Ω, σ(T ∩ [0, t]) × Ft

)
to (Λ,E).

The previous notion is rather complicated. Fortunately, in most of the cases a stronger regularity property
holds. Its statement contains the notion of continuity or a limit, which are not defined in arbitrary measur-
able spaces. For simplicity, we concentrate on the standard measurable spaces introduced in Section 1.2 but
generalizations are possible.

2More precisely, a probability space (Ω,F ,P) is called complete if for any B ∈ F with P(B) = 0 and for any A ⊂ B, one has A ∈ F
(and then P(A) = 0). Accordingly, a filtration {Ft}t∈T is complete if F0 contains the negligible sets
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Definition 2.3.4 (Continuous stochastic process). The stochastic process X taking values in a standard mea-
surable space (Λ,E) is continuous if for every ω ∈ Ω, the map T ∋ t 7→ Xt(ω) ∈ Λ is continuous. It is
a.s. continuous if for almost every ω, the map T ∋ t 7→ Xt(ω) ∈ Λ is continuous. In other words, X is
a.s. continuous if

P
({
ω ∈ Ω | lim

s→t
Xs(ω) = Xt(ω)

})
= 1.

It turns out that any continuous stochastic process is progressively measurable, as shown in [2, Prop. 2.1]

Observe that we haven’t impose any condition on the filtration yet. Some regularity on it are often necessary.
For this we set for any t ∈ T

Ft+ =
⋂
ε>0

Ft+ε. (2.3.1)

It turns out that the intersection of any σ-algebras is also a σ-algebra, and therefore Ft+ is also a σ-subalgebra
of F , with Ft ⊂ Ft+. With this notation, we say that the filtration is right-continuous if Ft = Ft+. One way
to think about this condition is that any information known right after t is also known at t. Observe also that
given a family (Xt)t∈T adapted to the filtration (Ft)t∈T , we can also define a new filtration {Gt}t∈T by setting
Gt := ∩s>tFs. Then {Gt}t∈T is a right-continuous filtration, and (Xt)t∈T is adapted to it. In applications it often
required that the filtration is right-continuous and contains the negligible events.

2.4 Brownian process

In this section we provide a brief description of the Brownian process. The first definition is quite gen-
eral, but later on we shall stick to a simpler presentation. In the sequel, a RN-valued stochastic process(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
means that each random variable Xt takes values in the measurable space (RN , σB).

Equivalently, we can also speak about multivariate stochastic process, or univariate stochastic process in the
special case N = 1. We shall also use the short notation a.s. for almost surely meaning that an equality
holds with probability 1. Note that we start with the Brownian process in dimension 1 because any Brownian
process in dimension N decomposes in N independent Brownian processes of dimension 1. We also use the
letter B instead of X, since this notation is commonly used for the Brownian process. In the statement, Bt can
be interpreted as the random variable corresponding to the position at time t, while for t > s the difference
Bt − Bs should be interpreted as the difference of position or as the increment between the position at time s
and position at time t.

Definition 2.4.1 (1-dimensional Brownian process). A Stochastic process B :=
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
taking values in R is a 1-dimensional Brownian process if

1. B0 = 0 a.s.,

2. For any 0 ≤ s ≤ t the random variable Bt − Bs is independent of Fs,

3. For any 0 ≤ s < t the random variable Bt − Bs is a Gaussian random variable N
(
0, t − s

)
.

Condition 1. can be thought as an initial condition. The condition 2. needs an explanation and an interpretation.
The notion of independence of random variables has been introduced in Definition 1.3.6. A family F1, . . . ,Fm

of σ-subalgebras of F are called independent if for any A1 ∈ F1, . . . , Am ∈ Fm one has

P
(
A1 ∩ A2 ∩ · · · ∩ Am)

= P
(
A1)P(A2) . . . P(Am)

.3

3This is the common requirement for the independence of a family of events.
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One then infers that the random variables X1, X2, . . . , Xm on (Ω,F ,P) are independent if and only if the σ-
algebras σ(X1), σ(X2), . . . , σ(Xm) they generate are independent. Finally, a random variable X on (Ω,F ,P) is
independent of a σ-subalgebra G of F if and only if the σ-algebras G and σ(X) are independent. Note that
this happens if and only if X is independent of every G-measurable random variables. It is this latter notion
of independence which is used in condition 2. of the previous definition. Intuitively, this condition means that
the increment in the process after time s are independent of the process up to time s.

Exercise 2.4.2. Prove the statements of the previous paragraph, namely: The random variables X1, X2 on
(Ω,F ,P) are independent if and only if the σ-algebras σ(X1), σ(X2) they generate are independent, and A
random variable X on (Ω,F ,P) is independent of a σ-subalgebra G of F if and only X is independent of every
G-measurable random variables.

Exercise 2.4.3. Show that the Brownian process is a Gaussian process, see also [2, Remarks 3.1].

By a rather deep result about continuity (Kolmogorov’s continuity theorem) it turns out that there exists a
modification of (Bt)t∈R+ for which the stochastic process is continuous. Thus, we shall assume from now
on that the Brownian process is continuous. In addition the following properties of the Brownian process
provides a new characterization of it, see [2, Prop. 3.1]:

Proposition 2.4.4. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be a 1-dimensional Brownian process. Then

1. B0 = 0 a.s.,

2. For every 0 ≤ t1 < t2 < · · · < tN , the N-dimensional vector B :=
(
Bt1 , Bt2 , . . . , BtN

)T is a Gaussian
vector with E(B) = 0,

3. E(BtBs) = t ∧ s.

Conversely, properties 1. to 3. define a 1-dimensional Brownian process with the natural filtration. It is called
the natural Brownian process.

Observe that choosing any t ∈ R+, one infers from 2. that E(Bt) = 0. Thus, the converse statement corresponds
to what was given in Example 2.2.2, when the notion of filtration was not introduced (see Remark below). Let
us finally mention another consequence of Definition 2.4.1: for any sequence ≤ t0 < t1 < · · · < tN , the family
of random variables {Bt j − Bt j−1}

N
j=1 are independent random variables. This property is sometimes used for

(partially) defining the Brownian process.

Remark 2.4.5. The last part of Proposition 2.4.4 means that whenever the Brownian process is introduced
without any information about the filtration, then the natural filtration is implicitly used. Since the natu-
ral filtration is the minimal filtration, having the Brownian process with the natural filtration is the weakest
version (minimal amount of information available at any time t). In fact, it can be shown that any Brown-
ian process is a Brownian process with respect to the augmented natural filtration, obtained by adding all
negligible events to the natural filtration, and that this filtration is right-continuous [2, Prop. 4.3]. Thus,(
Ω,F ,P, (Gt)t∈R+ , (Bt)t∈R+

)
is a Brownian process with a right-continuous filtration and with the negligible

events contained in Ft for any t ∈ R+. A process with these two properties is called a standard stochastic
process.

Let us now state additional properties of the Brownian process with respect to certain transformations. The
proof is interesting and can be studied as an exercise, see [2, Prop. 3.2].

Proposition 2.4.6. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be a 1-dimensional Brownian process. Then,

1. For any s ≥ 0,
(
Ω,F ,P, (Ft+s)t∈R+ , (Bt+s − Bs)t∈R+

)
is a 1-dimensional Brownian process (time shift),
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2.
(
Ω,F ,P, (Ft)t∈R+ , (−Bt)t∈R+

)
is a 1-dimensional Brownian process (mirror reflection),

3. For any c > 0,
(
Ω,F ,P, (Ft/c2)t∈R+ , (cBt/c2)t∈R+

)
is a 1-dimensional Brownian process (scaling),

4. The random variables defined by Zt := tB1/t for t > 0 and Z0 = 0 define a natural Brownian process.

We now discuss some properties of the paths, namely of the continuous functions t 7→ Bt(ω) for fixed ω ∈ Ω.
Recall that a partition Pℓ of an interval [a, b] consists in a set Pℓ := {tℓ0, t

ℓ
1, . . . , t

ℓ
nℓ } with tℓ0 = a, tℓnℓ = b

and tℓj < tℓj+1. For a given partition Pℓ, we set |Pℓ| := max j∈{1,...,nℓ} |t
ℓ
j − tℓj−1| for its mesh. For any function

f : [a, b]→ R we define the variation of f as

var[a,b]( f ) := sup
Pℓ

nℓ∑
j=1

| f (tℓj) − f (tℓj−1)| (2.4.1)

where the supremum is taken over all partitions of [a, b]. If var( f ) < ∞, then f is said to be of finite variation
or of bounded variation. If it is not bounded, we say that the function f has an infinite variation on [a, b].

Exercise 2.4.7. Let f : [a, b] → R. 1) If f is increasing, check that var[a,b]( f ) = f (b) − f (a). 2) If f ∈
C1([a, b]

)
, check that var[a,b]( f ) =

∫ b
a | f

′(t)|dt.

The following statement is borrowed from [4, Prop. 3.6]. Recall that the notion of convergence in the L2-sense
has been introduced in Definition 1.4.3.

Theorem 2.4.8. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be a 1-dimensional Brownian process.

1. Almost every path has a infinite variation on any finite interval, namely for any a, b ∈ R+

P
({
ω ∈ Ω | var[a,b]

(
t 7→ Bt(ω)

)
= ∞

})
= 1.

2. The quadratic variation of the Brownian process converges in the L2-sense, namely

lim
|Pℓ |→0

E
([ nℓ∑

j=1

(
Btℓj
− Btℓj−1

)2
− (b − a)

]2)
= 0.

3. Almost every path is nowhere differentiable, namely

P
({
ω ∈ Ω | t 7→ Bt(ω) is nowhere differentiable

})
= 1.

By restricting the partitions considered in 2., a different type of convergence can be used. Namely, let {Pℓ}ℓ∈N
be a sequence of partitions of [a, b], and let us assume that

∑
ℓ∈N |Pℓ| < ∞, which means that we consider a set

of partition with rapidly decaying meshes.

Theorem 2.4.9. Let {Pℓ}ℓ∈N be a sequence of partitions of [a, b] satisfying
∑
ℓ∈N |Pℓ| < ∞. Then almost surely

lim
ℓ→∞

nℓ∑
j=1

(
Btℓj
− Btℓj−1

)2
= b − a,

or equivalently

P
({
ω ∈ Ω | lim

ℓ→∞

nℓ∑
j=1

(
Btℓj

(ω) − Btℓj−1
(ω)

)2
= b − a

})
= 1.
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Let us mention that a proof of the statement 2. of Theorem 2.4.8 is provided in [1, Thm. 3.8] or in [14,
Thm. 9.1], see also [2, Prop. 3.4]. A special case of Theorem 2.4.9 is also provided in [1, Corol. 3.16] while
the general case is given in [14, Thm. 9.4]. From Theorem 2.4.9 it is possible to deduce statement 1. of
Theorem 2.4.8. By a contradiction argument based on Exercise 2.4.7, one then deduces that the paths can not
be continuously differentiable, but the statement 3. of Theorem 2.4.8 is much stronger, see for example [14,
Thm. 10.3].

Before the end of this section, let us briefly mention the definition of a N-dimensional Brownian process. The
definition is completely similar to Definition 2.4.1.

Definition 2.4.10 (N-dimensional Brownian process). A Stochastic process
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
taking

values in RN is a N-dimensional Brownian process if

1. B0 = 0 a.s.,

2. For any 0 ≤ s ≤ t the random variable Bt − Bs is independent of Fs,

3. For any 0 ≤ s < t the random variable Bt − Bs is a Gaussian random variable N
(
0, (t − s)I

)
, where I

denotes the N × N identity matrix.

As for the 1-dimensional Brownian process, we always assume the continuity of this stochastic process.
Properties of the N-dimensional Brownian process are similar to the 1-dimensional Brownian process since
each of its N components correspond to an independent 1-dimensional Brownian process [2, Rem. 3.2].

Exercise 2.4.11. Work on some of the exercises proposed in [1, Chap. 2 & 3] or in [2, Chap. 1 to 3].
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Chapter 3

Conditional expectation and martingales

In this chapter, we introduce the concept of martingales, which are special instances of stochastic processes.
However, their definition involves the notion of conditional expectation and of conditional probability. We
therefore start by introducing these notions.

3.1 Conditional expectation and conditional probability

Let (Ω,F ,P) be a probability space, and let A, B be two events, with P(B) , 0. The conditional probability
P(A|B) of A knowing B is defined by the formula

P(A|B) :=
P(A ∩ B)
P(B)

.

Clearly, if the events A and B are independent, one has

P(A|B) :=
P(A ∩ B)
P(B)

=
P(A)P(B)
P(B)

= P(A),

as it should be.

Whenever X,Y are two real and discrete valued random variables on (Ω,F ,P), the notion of conditional
probability of X given Y is also naturally defined: For any A included in the range of X and for any y belonging
to the range of Y , we set

P(X ∈ A|Y = y) :=
P
(
X ∈ A,Y = y

)
P(Y = y)

(3.1.1)

assuming that P(Y = y) > 0. This quantity corresponds to the probability of the random variable X ∈ A
knowing that the random variable Y takes the value y. In more precise terms, this reads

P(X ∈ A|Y = y) =
P
({
ω ∈ Ω | X(ω) ∈ A and Y(ω) = y

})
P({ω′ ∈ Ω | Y(ω′) = y})

.

Clearly, for B in the range of Y we can also define P(X ∈ A|Y ∈ B) by a similar formula:

P(X ∈ A|Y ∈ B) =
P
({
ω ∈ Ω | X(ω) ∈ A and Y(ω) ∈ B

})
P({ω′ ∈ Ω | Y(ω′) ∈ B})

.
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Based on these formulas, the conditional expectation E(X|Y = y) of X given Y = y Conditional expectation
can be computed by

E(X|Y = y) =
∑

x∈X(Ω)

xP(X = x|Y = y)

=
∑

x∈X(Ω)

x
P(X = x and Y = y)

P(Y = y)

=
1

P(Y = y)

∑
x∈X(Ω)

xP
(
{ω ∈ Ω | X(ω) = x and Y(ω) = y

)
=
E(X1Y=y)
P(Y = y)

,

(3.1.2)

where the last equality is left as an exercise. Note that X1Y=y is indeed a new real and discrete valued random
variable.

These expressions are well defined because the random variables (and in particular Y) were supposed to
be discrete valued. Our aim is to generalize these concepts to arbitrary random variables. We start with a
significant generalization of the conditional expectation given in (3.1.2). For it, observe that if X is a random
variable on a probability space (Ω,F ,P) with values in (Λ,E), and if D ∈ F , we can define a new induced
measure µD

X : E → [0, 1] given for any A ∈ E by

µD
X (A) := P

(
X−1(A) ∩ D

)
= P

(
{ω ∈ D | X(ω) ∈ A

})
,

which is well defined since
(
X−1(A) ∩ D

)
∈ F . Observe that in general µD

X (Λ) , 1, but nevertheless µD
X (Λ) ∈

[0, 1]. If (Λ,E) is standard, it is possible to set∫
D

X dP =
∫

D
X(ω)P(dω) :=

∫
Λ

xµD
X (dx) = E(1DX), (3.1.3)

as long as the integral converges absolutely. In the sequel, we shall use the first notation in (3.1.3), as it often
appears in the literature. Let us also observe that the notion of L1(Ω,F ,P) introduced in Section 1.4 is not
only well defined for univariate random variables, but for any random variables taking values in a standard
measurable space (Λ,E). Therefore, the previous definition holds for any X ∈ L1(Ω,F ,P).

Definition 3.1.1 (Conditional expectation with respect to a σ-subalgebra). Let (Ω,F ,P) be a probability
space, and let X be a random variable on (Ω,F ,P), taking with values in a standard measurable space and
belonging to L1(Ω,F ,P). Let also G be a σ-subalgebra of F . The conditional expectation of X given G,
denoted by E(X|G), is the random variable taking values in (Λ,E), measurable with respect to G, belonging
to ∈ L1(Ω,G,P), and satisfying for any D ∈ G∫

D
E(X|G)dP =

∫
D

X dP. (3.1.4)

In this definition, the random variable E(X|G) is defined up to a set of P-measure 0, which means that the con-
ditional expectation of X given G should be considered as an equivalence class of random variables. Clearly,
we fix one in its representatives and consider always this one. Observe that in the l.h.s. of (3.1.4), only the
restricted measure P on G is involved, namely only the values of P on elements of G are playing a role in the
integral. Nevertheless, we keep the same notation for this restricted measure.
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It is the result of a theorem, see for example [2, Thm. 4.1], that there exists such a random variable E(X|G).
Note that a rather easy consequence of this definition is that the equality

E
(
WE(X|G)

)
= E(WX) (3.1.5)

holds for any bounded and G-measurable univariate4 random variable W on (Ω,F ,P). The property (3.1.5) is
sometimes taken as part of the definition of the conditional expectation of X given G, see [1, Def. 4.14]. By
choosing the constant random variable W = 1 (function taking the constant value 1), one deduces from (3.1.5)
that

E
(
E(X|G)

)
= E(X). (3.1.6)

Exercise 3.1.2. Prove (3.1.5), or at least justifies it as precisely as possible, starting from Definition 3.1.1.

The interest in the previous notion comes from the following framework. Let us consider a second random
variable Y on (Ω,F ,P) and taking values in (Λ′,E′), and recall that σ(Y) denotes the smallest σ-subalgebra
of F defined by Y . We can then consider the conditional expectation of X given σ(Y), and denote it simply by
E(X|Y) instead of E

(
X|σ(Y)

)
. Thus, if X ∈ L1(Ω,F ,P) takes values in the standard measurable space (Λ,E),

then the new random variable E(X|Y) belongs to L1(Ω, σ(Y),P) and also takes values in (Λ,E). By Doob-
Dynkin lemma, one has automatically E(X|Y) = g(Y) for some measurable function g : Λ′ → Λ. Having
this in mind, it follows that the univariate random variable W of (3.1.5) is always of the form h(Y) for some
measurable and bounded h : Λ′ → R, where R is endowed with the σ-algebra σB of Borel sets on R. In this
case (3.1.5) reads

E
(
h(Y)E(X|Y)

)
= E

(
h(Y)g(Y)

)
= E

(
h(Y)X

)
. (3.1.7)

Let us now list a few properties of the conditional expectations. The proof of the next statement is left as an
exercise. It is not so difficult, and inspiration can be obtained from [2, Prop. 4.1].

Proposition 3.1.3. Let X, X1, X2 be random variables on (Ω,F ,P) taking values in a standard measurable
space (Λ,E), and assume that these random variables belong to L1(Ω,F ,P). Let G be a σ-subalgebra of F ,
and let α, β ∈ R.

1. E
(
αX1 + βX2|G

)
= E(αX1|G) + E(βX2|G),

2. If X is G-measurable, then E(X|G) = X,

3. If X ≥ 0 a.s., then E(X|G) ≥ 0 a.s.,

4. If W is an univariate bounded and G-measurable random variable, then E
(
WX|G

)
= WE(X|G) a.s.,

5. If G′ is another σ-subalgebra of F satisfying G ⊂ G′, then E
(
E(X|G′)|G

)
= E(X|G) a.s.,

6. If X is independent of G, then E(X|G) = E(X) a.s., where E(X) can be considered as a constant random
variable,

7. If X is univariate and φ : R→ R is a convex lower semi-continuous function, then

E
(
φ(X)|G

)
≥ φ

(
E(X|G)

)
. (Jensen’s inequality)

Exercise 3.1.4. Study Examples 4.1, 4.2, and 4.3 on p. 92–93 of [2].

4Why univariate only ?
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Exercise 3.1.5 (r). In the framework of the previous proposition and for univariate random variables, show
that the map X 7→ E(X|G) is a bounded linear map from Lp(Ω,F ,P) to Lp(Ω,G,P) with a norm smaller or
equal to 1, for any p ≥ 1. More explicitly, show the linearity and that E

(
|E(X|G)|p

)
≤ E

(
|X|p

)
. In the proof,

use Jensen’s inequality for the function x 7→ |x|p.

Let us now provide an interpretation of E(X|G) in the framework of the Hilbert space L2(Ω,F ,P) for univariate
random variables. Note firstly that L2(Ω,G,P) is a subspace of L2(Ω,F ,P), since it is a stable under addition
and multiplication by scalars. In addition, for the univariate random variable X ∈ L2(Ω,F ,P) one infers from
(3.1.5) that for any bounded and univariate G-measurable function W on Ω one has

E
(
W

(
X − E(X|G)

))
= E(WX) − E

(
WE(X|G)

)
= 0. (3.1.8)

Since bounded and G-measurable functions are dense in L2(Ω,G,P), it follows that (3.1.8) holds for any W ∈
L2(Ω,G,P), when the expectation is understood as a scalar product, see section 1.4. Thus, X − E(X|G) (which
belongs to L2(Ω,F ,P)) is orthogonal to all elements of the subspace L2(Ω,G,P). Equivalently, it means that
E(X|G) is the orthogonal projection of X on L2(Ω,G,P). Still in other words, E(X|G) is the element of the
subspace L2(Ω,G,P) which minimizes the L2-distance to X, or equivalently E(X|G) is the best approximation
of X by elements of L2(Ω,G,P). Later on and for G = σ(Y), we shall understand E(X|Y) as the best estimation
of X given the information of Y .

The statements 2. and 6. of Proposition 3.1.3 are particularly simple. In the next statement we combine them,
and the result turns out to be useful, see [2, Lem. 4.1] for a sketch of the proof, and [14, Lem. A.3] for more
details.

Lemma 3.1.6 (Freezing lemma). Let (Ω,F ,P) be a probability space, and let G1,G2 be two independent
σ-subalgebras of F . For j ∈ {1, 2} let X j be a G1-measurable random variable from (Ω,F ,P) to a standard
measurable space (Λ j,E j) and belonging to L1(Ω,G j,P). Let Ψ : Λ1 × Λ2 → R be a measurable function,
when Λ1 × Λ2 is endowed with the σ-algebra E1 × E2. Then the following equalities hold:

E
(
Ψ(X1, X2)|G1) = (

E
(
Ψ(·, X2)

))
(X1) = E

(
Ψ(X1, X2)|X1)

wherever the map Ω ∋ ω 7→ Ψ
(
X1(ω), X2(ω)

)
∈ R is absolutely integrable.

Exercise 3.1.7. Check the statement for a function Ψ satisfying Ψ(x1, x2) = Ψ1(x1)Ψ2(x2), for x1 ∈ Λ1 and
x2 ∈ Λ2.

Exercise 3.1.8 (r). Study the position of the Brownian process at a random time, see Example 4.5 p. 95 of
[2].

Let us now move to the notion of conditional probability, as sketched in (3.1.1) in the discrete setting.

Definition 3.1.9 (Conditional probability). Let (Ω,F ,P) be a probability space, and let X,Y be random vari-
ables on this space, with X taking values in a measurable space (Λ,E) and Y taking values in a measurable
space (Λ′,E′). A family {νy}y∈Λ′ of probability measures on (Λ,E) is called a conditional probability for X
given Y if

1. For every A ∈ E the map Λ′ ∋ y 7→ νy(A) ∈ R is measurable from (Λ′,E′) to (R+, σB),

2. For any A ∈ E and B ∈ E′ one has

P
(
X ∈ A,Y ∈ B

)
=

∫
B
νy(A)µY (dy), (3.1.9)

where µY is the induced probability measure of the random variable Y.
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The probability measure νy on (Λ,E) can be understood as a suitable law for the random variable X keeping
into account the information Y = y. Since the l.h.s. of (3.1.9) can be understood as E

(
1A(X)1B(Y)

)
, one can

extend this equality by linearity. More precisely if (Λ,E) is a standard measurable space, if f : Λ → Λ is
measurable and verifies f (X) ∈ L1(Ω,F ,P), and if h : Λ′ → R is measurable and bounded, then one obtains
the equality

E
(
h(Y) f (X)

)
=

∫
Λ′

( ∫
Λ

f (x)νy(dx)
)
h(y)µY (dy). (3.1.10)

Considering then f = id, and setting g(y) :=
∫
Λ

xνy(dx) the previous equation reads

E
(
h(Y)X

)
=

∫
Λ′

h(y)g(y)µY (dy) = E
(
h(Y)g(Y)

)
.

By a comparison with (3.1.7), we observe that {νy}y∈Λ′ is the conditional probability of X given Y if and only
if whenever f (X) ∈ L1(Ω,F ,P) one has

E( f (X)|Y) = g(Y) a.s. with g(y) =
∫
Λ

f (x)νy(dx). (3.1.11)

In particular, for f = id one infers that

E(X|Y) = g(Y) a.s. with g(y) =
∫
Λ

xνy(dx)

which means that the conditional expectation is the mean value of the conditional probability.

If the conditional probability {νy}y∈Λ′ exists, the following notations are used for any A ∈ E :

P(X ∈ A|Y = y) = E(1A(X)|Y = y) = νy(A).

However, let us stress that the conditional expectation E(X|Y) always exists, while nothing similar can be
said about the conditional probability. Nevertheless, we shall see that it exists in some standard situations, as
shown below.

Example 3.1.10. Let X a Rm-valued random variable and let Y be a Rn-valued random variable, both
defined on a probability space (Ω,F ,P). We assume that their joint probability measure µ(X,Y) is abso-
lutely continuous, meaning that there exists a probability density function Π(X,Y) : Rm+n → R+, verifying∫
Rm+n Π(X,Y)(x, y)dxdy < ∞ and

µ(X,Y)(A) =
∫

A
Π(X,Y)(x, y)dxdy ∀A ⊂ σB(Rm+n).

Let ΠY : Rn → R+ be the marginal density function of Y defined by ΠY (y) :=
∫
Rm Π(X,Y)(x, y) dx, and set

Q := {y ∈ Rn | ΠY (y) = 0}. Clearly, P(Y ∈ Q) =
∫

QΠY (y)dy = 0. We then define for a.e. x ∈ Rm

Π(X,y)(x) :=

Π(X,Y)(x,y)
ΠY (y) if y < Q,

π(x) if y ∈ Q,

with π : Rm → R+ any density function. Then for any y ∈ Rn the function Π(X,y) corresponds to the density
function of the conditional probability of X given Y, previously denoted by νy. Indeed, one can check the
conditions of Definition 3.1.9, with µy = Π(X,y):
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1. If y < Q: ∫
Rm
Π(X,y)(x)dx =

∫
Rm

Π(X,Y)(x, y)
ΠY (y)

dx = 1,

and if y ∈ Q the same result holds,

2. For any A ∈ σB(Rm), the function

Rn ∋ y 7→ Π(X,y)(A) =

 1
ΠY (y)

∫
AΠ(X,Y)(x, y)dx if y < Q,∫

A π(x)dx if y ∈ Q,
∈ R+

is measurable,

3. If A ∈ σB(Rm) and B ∈ σB(Rm) with B ⊂ Qc, then

P(X ∈ A,Y ∈ B) =
∫

B

( ∫
A
Π(X,Y)(x, y)dx

)
dy =

∫
B

( ∫
A
Π(X,y)(x)dx

)
ΠY (y)dy.

If B ⊂ Q, then the same equality holds, with both sides equal to 0.

Thus, the function y 7→ Π(X,y) corresponds to the density of the conditional probability of X given Y, or
equivalently E(X|Y = y) = Π(X,y) dx.

It is also a good exercise to check that the formalism developed in this section can be applied to discrete
valued random variables, and that it leads to some familiar expressions, as presented at the very beginning of
this section. Alternatively, Gaussian random variables give other possible applications:

Exercise 3.1.11. Study and report about the conditional probability for Gaussian vectors, as presented in [2,
Sec. 4.4].

3.2 Martingales

In this section we study a new type of stochastic processes, which are at the root of the subsequent develop-
ments.

Definition 3.2.1 (Martingale, supermartingale, submartingale). For T ⊂ R+, a real valued stochastic process(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
satisfying Mt ∈ L1(Ω,F ,P) for any t ∈ T is a martingale if E(Mt|Fs) = Ms for all

s ≤ t. It is a supermartingale if E(Mt|Fs) ≤ Ms or a submartingale if E(Mt|Fs) ≥ Ms.

Note that a martingale is a special instance of a supermartingale and of a submartingale. As already mentioned
for the Brownian process, if the filtration is not mentioned, it means that the natural one is considered. Note
also that we consider only the univariate case for simplicity, but martingales can also take values in a standard
measurable space, or have values in C. Let us start by looking at some example of martingales.

Exercise 3.2.2. Let {Ft}t∈T be a filtration on a probability space (Ω,F ,P), and let X be a univariate ran-
dom variable on this space, with E(|X|) < ∞. Set Xt := E(X|Ft). Show that

(
Ω,F ,P, (Ft)t∈T , (Xt)t∈T

)
is a

martingale.

Exercise 3.2.3. Consider T = N and a sequence (Xn)n∈N of independent and real valued random variables
satisfying E(|Xn|) < ∞ and E(Xn) = 0. Set Yn :=

∑n
j=1 X j. Show that (Y j) j∈N and the natural filtration define a

martingale.
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Exercise 3.2.4. Show that the standard5 1-dimensional Brownian process is a martingale.

Exercise 3.2.5. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be the standard 1-dimensional Brownian process, and con-

sider the geometric Brownian process defined by St := S 0 exp
(
σBt + µt

)
, with σ > 0, µ ∈ R, and S 0 ∈ R an

arbitrary initial value. Show that this process is a martingale if and only if µ = − 1
2σ

2.

Exercise 3.2.6. Let
(
Ω,F ,P, (Ft)t∈R+ , (Bt)t∈R+

)
be the standard 1-dimensional Brownian process. Show that

the new process defined by Xt := B2
t is a submartingale, but that the process defined by Xt := B2

t − t is a
martingale.

Let us add one more exercise about the relation between supermartingale and martingale, see [2, Ex. 5.1].

Exercise 3.2.7 (Constant expectation). Let
(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
be a supermartingale, and assume that

E(Mt) is a constant independent of t. Then this stochastic process is a martingale.

Exercise 3.2.8 (Alternative definition of a martingale). Show that the following definition is equivalent to
Definition 3.2.1: A real valued stochastic process

(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
satisfying Mt ∈ L1(Ω,F ,P) for

any t ∈ T is a martingale if E
(
(Mt − Ms)|Fs

)
= 0 for all s ≤ t.

Let us now state one result for discrete time martingales, namely when T = N. Such stochastic processes
have many applications, and are simpler than the continuous ones. As a starter, a discrete time stochastic
process

(
Ω,F ,P, (Fn)n∈N, (An)n∈N

)
is said to be an increasing predictable process if A0 = 0, An ≤ An+1, and

An+1 is Fn-measurable, for all n ∈ N. Note that the Fn-measurability of An+1 roughly means that at time n we
know the value of the process at time n + 1. This knowledge is responsible for the term “predictable”. Such
processes appear in the following statement about the decomposition of any submartingale. It proof can be
found here or in [2, Thm. 5.1], and can be studied as an exercise.

Theorem 3.2.9 (Doob’s decomposition theorem). Let
(
Ω,F ,P, (Fn)n∈N, (Xn)n∈N

)
be a submartingale, then

there exists a unique decomposition Xn = Mn + An, with (Mn)n∈N a martingale and (An)n∈N an increasing
predictable process. The process (An)n∈N is called the compensator.

There exists a similar result for continuous time submartingales, but its precise statement is more delicate.
However, observe that Exercise 3.2.6 is already an illustration of this result. We now introduce a new concept:

Definition 3.2.10 (Stopping time). Let {Ft}t∈T be a filtration on a probability space (Ω,F ,P). A random
variable τ : Ω→ T ∪ {+∞} on this probability space is said to be a stopping time for this filtration if for any
t ∈ T

{τ ≤ t} ≡
{
ω ∈ Ω | τ(ω) ≤ t

}
∈ Ft.

For any stopping time τ we set Fτ for the σ-subalgebra of F defined by

Fτ =
{
A ∈ FT |

(
A ∩ {τ ≤ t}

)
∈ Ft for every t ∈ T

}
(3.2.1)

where FT is the smallest σ-subalgebra of F containing all Ft for t ∈ T .

In less precise words, τ is a stopping time if we can decide if the events {ω ∈ Ω | τ(ω) ≤ t} occurred based on
the information available at time t. Note that since Ft is stable under complement, the event {ω ∈ Ω | τ(ω) > t}
also belongs to Ft. Typical examples of stopping times are entry and hitting times of a RN-valued process
(Xt)t∈T into a set A ∈ σB(RN), as for example:

1. First entry time into A: τoA(ω) : inf{t ≥ 0 | Xt(ω) ∈ A},

5Standard Brownian process means the Brownian process endowed with the right-continuous filtration generated by the augmented
natural filtration.
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2. First hitting time of A: τA(ω) : inf{t > 0 | Xt(ω) ∈ A},

3. First exit time from A: τAc(ω) : inf{t > 0 | Xt(ω) < A},

with the convention that inf(Ø) := ∞. Note that depending on the regularity of the process and of the filtration,
and depending on the nature of A, it can be difficult to prove rigorously that these random variables are
indeed stopping times. Two example of precise statements are indicated below. Recall that a right-continuous
filtration (Ft+)t∈T can be constructed from any filtration, see the last paragraph of Section 2.3.

Lemma 3.2.11. Let
(
Ω,F ,P, (Ft)t∈R+ , (Xt)t∈R+

)
be a RN-valued stochastic process with right-continuous

paths, and let A ⊂ RN be an open set. Then the first hitting time τA is a stopping time if (Ft)t∈R+ is the
right-continuous filtration constructed from the natural filtration.

Lemma 3.2.12. Let
(
Ω,F ,P, (Ft)t∈R+ , (Xt)t∈R+

)
be a RN-valued stochastic process with continuous paths, and

let A ⊂ RN be a closed set. Then the first entry time τoA is a stopping time for the natural filtration, while τA is
a stopping time for the right-continuous filtration constructed from the natural filtration.

We refer to [14, Sec. 5.2] for the proof of these statements. Note that any last passage time can not (in general)
be a stopping time, since the future should be known in order to decide if it is a last passage or not. We now
gather a few general results about stopping times. The easy proof is left as an exercise, see also [2, Prop. 3.5].

Lemma 3.2.13. Let τ, η be two stopping times for the same filtration.

1. τ is Fτ-measurable,

2. τ ∨ η := max{τ, η} and τ ∧ η := min{τ, η} are stopping times,

3. If η ≤ τ, then Fη ⊂ Fτ,

4. Fη∧τ = Fη ∩ Fτ.

Based on the notion of stopping time, let us state an important result for martingales, called Stopping theorem,
see [2, Thm. 5.13].

Theorem 3.2.14. Let
(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
be a right-continuous martingale, and let τ1, τ2 be two a.s.

bounded stopping times, with τ1 ≤ τ2 a.s.. Then E
(
Mτ2 |Fτ1

)
= Mτ1 . The same statement holds for super-

martingale with E
(
Mτ2 |Fτ1

)
≤ Mτ1 , and for submartingale with E

(
Mτ2 |Fτ1

)
≥ Mτ1 .

A rather direct consequence of this statement is a statement about stopped martingales, see [1, Prop. 4.37] or
[2, Thm. 5.14].

Proposition 3.2.15. Let
(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
be a right-continuous martingale, and let τ be a stopping

time. Then
(
Mt∧τ

)
t∈T defines also a martingale with the same filtration, where Mt∧τ(ω) = Mt(ω) if t ≤ τ(ω)

and Mt∧τ(ω) = Mτ(ω)(ω) if t ≥ τ(ω).

Exercise 3.2.16. In the discrete case T = N, show that
(
Mn∧τ

)
n∈N also also adapted to the filtration (Fn)n∈N.

Observe that the notion of right-continuity was used in the previous two statements. Unlike Brownian process,
martingales are not automatically continuous (through a modification). Nevertheless, the following statement
provides a sufficient criterion for the right continuity see [2, Thm. 5.14] and [3, Thm. 1.4.3 & Corollary].

Theorem 3.2.17. Let
(
Ω,F ,P, (Ft)t∈T , (Mt)t∈T

)
be a supermartingale, and assume that the filtration is stan-

dard (= right-continuous and containing the negligible sets). Then (Mt)t∈T admits a right-continuous mod-
ification if and only if the map t 7→ E(Mt) is continuous. In particular, if (Mt)t∈T is a martingale, it has a
right-continuous modification.
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Let us still mentioned another consequence of the stopping theorem, which is referred to as the Optional
Stopping Theorem:

Theorem 3.2.18. Let
(
Ω,F ,P, (Fn)n∈N, (Mn)n∈N

)
be a discrete time martingale, and let τ be an a.s. bounded

stopping time. Then E(Mτ) = E(M0).

Let us now state a result which makes discrete time martingales particularly attractive. For this, observe that
any univariate random variable X can be written as X = X+ − X− with X± ≥ 0 (decomposition into positive
and negative part of any function).

Theorem 3.2.19.
(
Ω,F ,P, (Fn)n∈N, (Mn)n∈N

)
be a discrete time supermartingale satisfying the uniform con-

dition supn∈N E(M−n ) < ∞. Then (Mn)n∈N converges almost surely to a finite limit, namely there exists C < ∞
such that

P
({
ω ∈ Ω | lim

n→∞
Mn(ω) = C

})
= 1.

In particular, if Mt ≥ 0, then (Mn)n∈N converges almost surely to a finite limit.

For various exercise, it is necessary to use the Dominated convergence theorem, which is now recalled:

Theorem 3.2.20. If (Xn)n∈N is a family of univariate random variables on (Ω,F ,P) converging almost surely
to a random variable X∞, and if there exists another random variable Y ∈ L1(Ω,F ,P) verifying |Xn| ≤ Y, then
X∞ ∈ L1(Ω,F ,P) and limn→∞ E(Xn) = E(X∞).

Let us mention one specific application of this theorem. In its framework, suppose that all univariate random
variables are uniformly bounded by a constant, namely there exists c > 0 such that |Xn| ≤ c for all n. Since c,
seen as a constant function, belongs to L1(Ω,F ,P), then this constant function can play the role of the random
variable Y and the theorem applies. It means that any uniformly bounded family of univariate random variables
{Xn}n∈N converging almost surely to a random variable X∞ satisfies limn→∞ E(Xn) = E(X∞). In particular, it
implies that any convergence almost surely is also a convergence in probability: If {Xn}n∈N converges almost
surely to X∞, for any ε > 0 one has

lim
n→∞
P
(
|Xn − X∞| > ε

)
= lim

n→∞
E
(
1|Xn−X∞ |>ε

)
= E

(
lim
n→∞

1|Xn−X∞ |>ε
)
= E

(
1|0|>ε

)
= 0 (3.2.2)

where we have used the uniform bound 1|Xn−X∞ |>ε ≤ 1 for the second equality.

Exercise 3.2.21. Study and report on the gambler’s ruin problem, see for example [1, Example 4.41 & 4.42].

Exercise 3.2.22. Study and report on the first passage time for the 1D Brownian process, for example see [1,
Example 4.43].

Exercise 3.2.23. Work on some problems proposed in [1, p. 93–97] or in [2, p. 75–85, 104–107, or 139–150].
The second book is more complicated, but solutions or hints are presented at the end of the book.

Let us conclude this section with a few additional results about the 1D standard Brownian process (Bt)t≥0,
mostly based on the notion of stopping time. For more details, we refer to [1, Sec. 4.5] and to [11, Chap. 3].

Let a ∈ R and let τa be the first hitting time, namely τa := inf{t > 0 | Bt = a}. For a < 0 < b we also set
τab := min{τa, τb}, which corresponds to the time to exit the interval (a, b). Note that these random variables
take values in R+.

Proposition 3.2.24. For any a < 0 < b, one has P(τab < ∞) = 1 and E(τab) < ∞. Similarly, P(τa < ∞) = 1
and P(τ0 < ∞) = 1.
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We refer to [11, Thm. 3.13 & 3.14] for the proof of the previous statement, and to [11, Thm. 3.18] for the
following one.

Proposition 3.2.25. For any a ∈ R the random variable τa corresponding to the hitting time is absolutely
continuous, with probability density function Πτa : R+ → R+ given for t > 0 by

Πτa(t) :=
|a|
√

2π
t−

3
2 e−

a2
2t .

Also, E(τa) = ∞.

As a final nice result, let us provide the probability that the standard Brownian process starting at 0 comes
back to 0 in a certain interval of time, see [11, Sec. 3.9].

Proposition 3.2.26. For 0 < t < T, the probability that the Brownian process starting at 0 comes back to 0 at
least once in the time interval (t,T ) is given by 2

π arccos
( t

T
)
. The probability that it does not come back to 0

in the time interval (t,T ) is given by 2
π arcsin

( t
T
)
.

Many other quantities can be explicitly computed for the Brownian process. You can enjoy reading various
textbooks on the topic, and write any report on this topic. ,

30



Chapter 4

Stochastic integrals

In this chapter, we give a meaning to a very new types of integrals, involving the Brownian process and
martingales. Before this, we quickly recall the construction of the Riemann integrals, and present one first
extension of these integrals.

4.1 Riemann and Riemann-Stieltjes integrals

For any interval [a, b], we write Pℓ for the partition defined by Pℓ := {tℓ0, t
ℓ
1, . . . , t

ℓ
nℓ } with tℓ0 = a, tℓnℓ = b and

tℓj < tℓj+1, and set |Pℓ| := max j∈{1,...,nℓ} |t
ℓ
j − tℓj−1| for its mesh. We also consider a family C := {c1, c2, . . . , cnℓ }

with tℓj−1 ≤ c j ≤ tℓj. For any bounded function f : [a, b]→ R we define the sum

R( f ,Pℓ,C) :=
nℓ∑
j=1

f (c j)(tℓj − tℓj−1)

and call it the Riemann sum for f , depending on the partition Pℓ and on the family C. In order to lose the
dependence on C, we can introduce the Darboux sums defined by

Rmin( f ,Pℓ) :=
nℓ∑
j=1

inf
c∈[tℓj−1,t

ℓ
j]

f (c) (tℓj − tℓj−1)

and

Rmax( f ,Pℓ) :=
nℓ∑
j=1

sup
c∈[tℓj−1,t

ℓ
j]

f (c) (tℓj − tℓj−1).

Observe that if f is continuous, then the Darboux sums correspond to some Riemann sums, but for general
bounded functions, the infimum or the supremum in each subinterval might not be realized by a point in the
interval. Clearly, Rmin( f ,Pℓ) ≤ Rmax( f ,Pℓ), and we say that the function is Riemann integrable on [a, b] if
the following equality holds

sup
Pℓ

(
Rmin( f ,Pℓ)

)
= inf
Pℓ

(
Rmax( f ,Pℓ)

)
.

In this case, we simply write
∫ b

a f (t) dt for the resulting number. Let us finally emphasize two important
properties of the Riemann integral: it is linear and additive, namely∫ b

a

(
f + λg

)
(t)dt =

∫ b

a
f (t)dt + λ

∫ b

a
g(t)dt
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if f and g are Riemann integrable on [a, b] and λ ∈ R, and

∫ b

a
f (t)dt =

∫ c

a
f (t)dt +

∫ b

c
f (t)dt

for any c ∈ (a, b), whenever f is Riemann integrable on [a, b].

Let us now introduce the Riemann-Stieltjes integral. For this, we consider two functions F, g : [a, b]→ R and
set

S(g, F,Pℓ,C) :=
nℓ∑
j=1

g(c j)
(
F(tℓj) − F(tℓj−1)

)
.

Clearly, if F = id, then this expression corresponds to the Riemann sum. The function g is called the integrand
while the function F is called the integrator. We can then look for sufficient conditions on g and F such that
this expression admits a limit as |Pℓ| → 0 (independent of Pℓ and of C), in which case we write

lim
|Pℓ |→0

nℓ∑
j=1

g(c j)
(
F(tℓj) − F(tℓj−1)

)
=:

∫ b

a
g(t)dF(t) (4.1.1)

and call it the Riemann-Stieltjes integral of g with respect to F. For example, it is known that if g is continuous
and if F is of bounded variation, as introduced in (2.4.1), then the Riemann-Stieltjes integral exists. However,
for future use of this integral, this set of conditions is not suitable. For this we introduce the notion of p-
variation: for p ≥ 1 the p-variation of a function f : [a, b]→ R is defined by

varp
[a,b]( f ) :=

(
sup
Pℓ

nℓ∑
j=1

| f (tℓj) − f (tℓj−1)|p
) 1

p
(4.1.2)

where the supremum is taken over all partitions of [a, b]. Clearly, var1
[a,b]( f ) = var[a,b]( f ). Then, it turns out

that if

1. g has bounded p-variation on [a, b], F has bounded q-variation on [a, b], and 1
p +

1
q > 1,

2. g and F have no common discontinuity on [a, b],

then the limit in (4.1.1) exists.

As a possible application of this result, expressions of the form
∫ b

a g(t) dBt(ω) can be defined, where (Bt)t≥0
denotes the standard 1-dimensional Brownian process. Indeed, the function t 7→ Bt(ω) has a bounded q-
variation for any q > 2, and it is then possible to choose any function g which has bounded p-variation for
some p < 2.

Exercise 4.1.1. Let f : [a, b] → R be differentiable, with bounded derivative. Show that f has bounded
variation. Note that the statement is slightly different compared to Exercise 2.4.7.

However, the previous construction is not sufficient, since expressions of the form
∫ b

a Bt(ω) dBt(ω) or simply∫ b
a g(t) dBt(ω) with g continuous, can not be considered. In other words, since such expressions can not hold

for individual paths, a different approach is necessary.
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4.2 Itô integral

In this section, we shall give a meaning to integrals of the form
∫ T

0 Xt dBt for some stochastic process
(
Xt

)
t∈[0,T ]

for some T > 0. If Xt = 1, this integral should satisfy
∫ T

0 Xt dBt = BT − B0. As before, (Bt)t≥0 denotes the
standard 1-dimensional Brownian process. More precisely, when dealing with two stochastic processes de-
fined on the same probability space (Ω,F ,P) and endowed with the same filtration (Ft)t∈T , we shall carefully
introduced the first one as a stochastic process, and say that the second one is adapted to its filtration.

For simplicity, we start by introducing the notion of stochastic integral in discrete time. As already men-
tioned on page 27, a discrete time stochastic process

(
Ω,F ,P, (Fn)n∈N, (Xn)n∈N

)
is predictable if Xn is Fn−1-

measurable, for all n ≥ 1. As an example, the amount of money a gambler will play at time n is predictable
based on the outcomes at time 1, 2, . . . , n − 1, but not on the outcome at time n.

Definition 4.2.1 (Discrete time stochastic integral). Let M :=
(
Ω,F ,P, (Fn)n∈N, (Mn)n∈N

)
be a univariate

stochastic process, and let X := (Xn)n∈N be an adapted and predictable univariate stochastic process. The
discrete time stochastic integral of X with respect to the process M is defined for any n ∈ N by

(X · M)n := X0 M0 +

n∑
j=1

X j(M j − M j−1).

If the stochastic process
(
Ω,F ,P, (Fn)n∈N, (Mn)n∈N

)
is a martingale, the above expression is called a the mar-

tingale transform. Let us immediately state two easy results. Proofs can be studied as an exercise, see also
[11, Thm. 3.36 & 3.37].

Theorem 4.2.2. Let M :=
(
Ω,F ,P, (Fn)n∈N, (Mn)n∈N

)
be a martingale, and let X := (Xn)n∈N be an adapted

and predictable univariate stochastic process, with (X · M)n belonging to L1(Ω,F ,P) for any n ∈ N. Then(
(X · M)n

)
n∈N defines a martingale with the filtration (Fn)n∈N.

Corollary 4.2.3. Let M :=
(
Ω,F ,P, (Fn)n∈N, (Mn)n∈N

)
be a martingale, and let X := (Xn)n∈N be an adapted,

predictable and bounded univariate stochastic process, then
(
(X · M)n

)
n∈N defines a martingale with the fil-

tration (Fn)n∈N. If Xn,Mn ∈ L2(Ω,F ,P) for any n ∈ N, then the same result hold.

As an example of the previous construction, let (Bt)t≥0 be the standard 1-dimensional standard Brownian
process, and consider 0 = t0 < t1 < · · · < tn−1 < tn = t. One can then check that the sequence M := (Mn)n∈N,
defined by M0 := 0 and M j := Bt j for j ∈ 1, 2, . . . , n, is a martingale for the filtration given by F0 = {Ø,Ω}
and F j the smallest σ-algebra generated by σ(Bti) for i ∈ {1, . . . , j}. By setting X := (0, Bt0 , Bt1 , . . . , Btn−1),
one has for any k ∈ {1, . . . , n} (

X · M
)
k =

k∑
j=1

Bt j−1

(
Bt j − Bt j−1

)
. (4.2.1)

Observe that this process is a discrete time analogue of the integral
∫ b

a Bt(ω) dBt(ω) mentioned before. How-
ever, in the above formula, there is no evaluation on ω ∈ Ω, which means that the resulting sum is a random
variable, not a number.

Exercise 4.2.4. Check that the content of (4.2.1) corresponds to a discrete time stochastic integral.

Let us now move to the notion of stochastic integral in continuous time. For that, recall that the notion of pro-
gressively measurable has been introduced in Definition 2.3.3, and that continuous process are automatically
progressively measurable, see last part of Section 2.3. In fact, left-continuous or right-continuous stochastic
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processes are also automatically progressively measurable. We start with the definition of a large class of
processes that will play the role of the integrand.

Definition 4.2.5 (Lp-progressively integrable process). For 0 ≤ a < b < ∞ and p ≥ 1, a progressively
measurable and univariate process X =

(
Ω,F ,P, (Ft)t∈[a,b], (Xt)t∈[a,b]

)
belongs to Mp

loc
(
[a, b]

)
if
∫ b

a |Xt|
p dt < ∞

almost surely, or equivalently if

P
({
ω ∈ Ω |

∫ b

a
|Xt(ω)|p dt < ∞

})
= 1.

Such process belongs to Mp([a, b]
)

if

E
( ∫ b

a
|Xt|

p dt
)
< ∞.

Let us observe that if a stochastic process is continuous, it automatically belong to Mp
loc

(
[a, b]

)
. In order to

prove if it is also in Mp([a, b]
)
, one can use Fubini’s theorem, namely

E
( ∫ b

a
|Xt|

p dt
)
=

∫ b

a
E
(
|Xt|

p)dt.

Thus, in order to be in Mp([a, b]
)

it is sufficient that the map t 7→ E
(
|Xt|

p) belongs to L1([a, b]
)
.

Among these processes, some are particularly simple, namely the elementary processes. Namely, consider a
partition a = t0 < t1 < · · · < tn−1 < tn = b, then the stochastic process X is elementary if

Xt(ω) =
n−1∑
j=0

X j(ω)1(t j,t j+1](t). (4.2.2)

Note that X j has to be Ft j-measurable, and the elementary process (4.2.2) is clearly left-continuous, and
therefore progressively measurable. Also, it automatically belongs to Mp

loc
(
[a, b]

)
. In addition, observe that

E
( ∫ b

a
|Xt|

p dt
)
= E

( n−1∑
j=0

|X j|
p (t j+1 − t j)

)
=

n−1∑
j=0

E
(
|X j|

p) (t j+1 − t j),

which means that elementary process X ∈ Mp([a, b]
)

if and only X j ∈ Lp(Ω,F ,P) for all j.

Recall that in our definition of a stochastic process, the family of random variables is automatically adapted
to the filtration. For the elementary processes we define their stochastic integrals as follows:

Definition 4.2.6 (Stochastic integral of elementary process). Let
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-

dimensional Brownian process, and let X := (Xt)t∈[a,b] be an adapted elementary process as in (4.2.2). The
stochastic integral of X with respect to the Brownian process is defined by∫ b

a
Xt dBt :=

n−1∑
j=0

X j(Bt j+1 − Bt j).

Let us immediately state some properties of these integrals. Proofs can be found in [2, Lem. 7.1] or in [11,
p. 93].
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Proposition 4.2.7. In the framework of the previous definition, the integral is linear in the integrand X, and if
Xt = 1(a,b] it satisfies

∫ b
a Xt dBt = Bb − Ba. In addition, if X belongs to M2([a, b]

)
one has

1. E
( ∫ b

a Xt dBt
∣∣∣ Fa

)
= 0,

2. E
(( ∫ b

a Xt dBt
)2 ∣∣∣ Fa

)
= E

( ∫ b
a X2

t dt
∣∣∣ Fa

)
(isometry property).

In particular E
( ∫ T

0 Xt dBt
)
= 0 and E

(( ∫ T
0 Xt dBt

)2)
= E

( ∫ T
0 X2

t dt
)
=

∫ T
0 E

(
X2

t
)
dt, for any T > 0.

In order to define stochastic integrals for more general processes, one needs to approximate them by elemen-
tary processes. The next technical statement provides the information about such approximations.

Lemma 4.2.8. Let
(
Ω,F ,P, (Ft)t∈[a,b], (Xt)t∈[a,b]

)
be a stochastic process belonging to Mp

loc
(
[a, b]

)
for some

p ≥ 1. Then there exists a sequence of adapted elementary processes
(
(Xn,t)t∈[a,b]

)
n∈N belonging to Mp

loc
(
[a, b]

)
such that

lim
n→∞

∫ b

a
|Xt − Xn,t|

pdt = 0 a.s. (4.2.3)

If X ∈ Mp([a, b]
)
, then there exists a sequence of adapted elementary processes

(
(Xn,t)t∈[a,b]

)
n∈N belonging to

Mp([a, b]
)

such that

lim
n→∞
E
( ∫ b

a
|Xt − Xn,t|

pdt
)
= 0. (4.2.4)

As a consequence of these approximation procedures, it is possible to give a definition of a stochastic integral
for all elements of M2

loc
(
[a, b]

)
and of M2([a, b]

)
. Recall that the Lp-convergence has been introduced in

Definition 1.4.3 while the convergence in probability6 has been mentioned in (3.2.2).

Definition 4.2.9 (Itô stochastic integral). Let
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-dimensional Brown-

ian process, and let (Xt)t∈[a,b] be an adapted stochastic process belonging to M2
loc

(
[a, b]

)
. Then one sets∫ b

a
Xt dBt := lim

n→∞

∫ b

a
Xn,t dBt, (4.2.5)

with
(
(Xn,t)t∈[a,b]

)
n∈N an approximating sequence by elementary processes in M2

loc
(
[a, b]

)
and satisfying (4.2.3),

and where the convergence is in probability. If (Xt)t∈[a,b] belongs to M2([a, b]
)
, then the approximating se-

quence can be taken in M2([a, b]
)

and satisfying (4.2.4) and the convergence holds in the L2-sense.

Clearly, these definitions are meaningful if and only if the expression for
∫ b

a Xt dBt does not depend on the
sequence chosen for defining it. This property holds, as shown in [11, Thm. 4.3] but it is not trivial and it is
based on the completeness of Hilbert spaces. Let us now state some properties of the Itô stochastic integrals.
They clearly follows from Proposition 4.2.7.

Proposition 4.2.10. In the framework of the previous definition and if X := (Xt)t∈[a,b] belongs to M2
loc

(
[a, b]

)
,

then the integral defined in (4.2.5) is linear in the integrand X. If (Xt)t∈[a,b] belongs to M2([a, b]
)
, then one has

1. E
( ∫ b

a Xt dBt
∣∣∣ Fa

)
= 0,

2. E
(( ∫ b

a Xt dBt
)2 ∣∣∣ Fa

)
= E

( ∫ b
a X2

t dt
∣∣∣ Fa

)
.

6A sequence of univariate random variables (Xn)n∈N converges to the random variable X∞ in probability if for any ε > 0 one has
limn→∞ P

(
|Xn − X∞| ≥ ε

)
= 0.
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In particular E
( ∫ T

0 Xt dBt
)
= 0 and E

(( ∫ T
0 Xt dBt

)2)
= E

( ∫ T
0 X2

t dt
)
=

∫ T
0 E

(
X2

t
)
dt, for any T > 0.

It is interesting to observe that Itô stochastic integrals need not have a mean or a variance, but when they do,
the mean is zero and the variance is given by 2. of Proposition 4.2.10.

Corollary 4.2.11. Let
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-dimensional Brownian process, and let

(Xt)t∈[a,b] be an adapted and continuous stochastic process. Then the stochastic integral
∫ b

a Xt dBt exists. In

particular, if f is any continuous real function on R, then the stochastic integral
∫ b

a f (Bt)dBt is well defined.

Exercise 4.2.12. In the framework of the previous corollary, study the examples 4.3 to 4.5 of [11].

Exercise 4.2.13. Study the equality ∫ b

a
Bt dBt =

1
2

(
B2

b − B2
a − (b − a)

)
. (4.2.6)

The proof appears at several places, see for example [13, Sec. 2.2.1] or [12, Sec. 4.1].

Let us state one more result about the product of Itô stochastic integrals. The proof can be studied as an
exercise, see [2, Rem. 7.1 p. 189] of [11, Thm. 4.5].

Theorem 4.2.14. Let
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-dim. Brownian process, and let (Xt)t∈[0,T ],

(Yt)t∈[0,T ] be adapted stochastic processes belonging to M2([0,T ]
)
. Then

E
(( ∫ T

0
Xt dBt

)( ∫ T

0
Yt dBt

))
=

∫ T

0
E
(
XtYt

)
dt.

4.3 Martingale property

For any stochastic process (Xt)t∈[0,T ] adapted to the standard 1-dimensional Brownian filtration and belonging
to M2

loc
(
[0,T ]

)
, one can consider the stochastic integral

Yt :=
∫ t

0
Xu dBu, t ∈ [0,T ]

and the corresponding map t 7→ Yt. Clearly, the following equality holds for 0 ≤ s < t ≤ T :

Yt − Ys =

∫ t

s
Xu dBu.

By coming back to the definition of Itô integral as a limit of elementary functions, it can also be shown that
Yt is Ft-measurable. and therefore that this new stochastic process Y := (Yt)t∈[0,T ] is adapted to the filtration
(Ft)t≥0 of the standard 1-dimensional Brownian process.

Assume now that (Xt)t∈[0,T ] belongs to M2([0,T ]
)
. It then follows from Proposition 4.2.10 that for 0 < s <

t ≤ T

E
(
Yt|Fs

)
= E

( ∫ t

0
Xu dBu

∣∣∣ Fs
)
=

∫ s

0
Xu dBu + E

( ∫ t

s
Xu dBu

∣∣∣ Fs
)
= Ys + 0 = Ys.

Therefore, (Yt)t∈[0,T ] is a martingale. It also follows from Proposition 4.2.10 that E
(
Y2

t
)
=

∫ t
0 E

(
X2

u
)

du. As a
consequence, one has

sup
t∈[0,T ]

E
(
Y2

t
)
=

∫ T

0
E
(
X2

u
)
du < ∞.
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A martingale satisfying this property is said to be square integrable on [0,T ]. Let us also mention that this
martingale has a continuous version, which is always chosen. Let us summarize these properties in one single
statement, see [2, Thm. 7.3]:

Theorem 4.3.1. Let
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-dim. Brownian process, and let (Xt)t∈[0,T ] be

an adapted stochastic process belonging to M2([0,T ]
)
. Then the stochastic process Y := (Yt)t∈[0,T ] given by

Yt :=
∫ t

0 Xu dBu defines a mean zero and square integrable continuous martingale.

Let us mention that if (Xt)t∈[0,T ] is an adapted stochastic process belonging to M2
loc

(
[0,T ]

)
only, the corre-

sponding process (Yt)t∈[0,T ] is continuous but may fail to be a martingale: it is only a local martingale, see [2,
Sec. 7.5]. For completeness we provide the definition (note that martingales also belong to the set of local
martingales).

Definition 4.3.2 (Local martingale). A real valued stochastic process M :=
(
Ω,F ,P, (Ft)t≥0, (Mt)t≥0

)
is a

local martingale if there exists an increasing sequence (τn)n∈N of stopping times such that

1. τn → ∞ as n→ ∞ a.s.,

2.
(
Mt∧τn

)
t≥0 is a martingale for the filtration (Ft)t≥0, for every n.

The sequence (τn)n∈N is said to reduce the local martingale M.

Exercise 4.3.3. Study the examples 5.19 and 5.20 of [1], showing that the Ornstein-Uhlenbeck process and
the Brownian bridge can be obtained as Itô integrals.

Let us provide one result about stochastic integrals when the integrand in not random:

Theorem 4.3.4 (Wiener integral). Let f : [0,T ] → R be square integrable, namely
∫ T

0 f (s)2 ds < ∞. Then
the function

[0,T ] ∋ t 7→
∫ t

0
f (u)dBu

is a Gaussian process with zero mean value and covariance function given by

Cov
(
Yt,Ys

)
=

∫ t∧s

0
f (u)2 du.

Exercise 4.3.5. Study the proof of the above theorem, looking either at [1, Cor. 5.18] or at [11, Thm. 4.9].

Finally, let us state some results about the regularity of the stochastic process (Yt)t∈[0,T ]. For that purpose and
by analogy to (4.1.2) we define the quadratic variation of a stochastic process Y = (Yt)t∈[0,T ] by

[Y]t := lim
|Pℓ |→0

nℓ∑
j=1

|Ytℓj
− Ytℓj−1

|2 (4.3.1)

where the limit is in probability over all partitions Pℓ of the interval [0, t] with mesh |Pℓ| = δn → 0 as
n → ∞. Note that this quadratic variation is a random variable, and that this notation looks rather standard
(and awkward /).

Proposition 4.3.6. Let
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-dimensional Brownian process, and let

(Xt)t∈[0,T ] be an adapted stochastic process belonging to M2
loc

(
[0,T ]

)
. Then the quadratic variation of the

local martingale Y := (Yt)t∈[0,T ] defined by Yt :=
∫ t

0 Xu dBu satisfies

[Y]t =

∫ t

0
X2

u du. (4.3.2)
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We refer to [11, Thm. 4.9] for a sketch of the proof, and to [5, Thm. 3.8] for a more general result.

Before the next statement, let us state a relatively easy property for real functions on an interval [a, b]. Recall
that p-variations were introduced in (4.1.2).

Exercise 4.3.7. Let f : [a, b]→ R be continuous. If var1
[a,b]( f ) < ∞, then var2

[a,b]( f ) = 0.

The next statement is quite general, and hold not only for the martingale process Y , see [2, Thm. 5.15].

Theorem 4.3.8. Let
(
Ω,F ,P, (Ft)t≥0, (Mt)t≥0

)
be a continuous martingale process, square integrable on

[0,T ]. If the process has finite variation, then it is a.s. constant. In particular, if (Xt)t∈[0,T ] is a stochas-
tic process belonging to M2([0,T ]

)
and adapted to the standard 1-dimensional Brownian process and with∫ t

0 X2
u du > 0 for all t ∈ (0,T ], then the martingale Y := (Yt)t∈[0,T ] defined by Yt :=

∫ t
0 Xu dBu has infinite

variation on [0, t] for all t ∈ (0,T ].

4.4 Itô’s lemma

In this section we introduce Itô’s lemma which is of crucial importance for the computation of several stochas-
tic integrals. Several versions of this lemma exist, and some of them are presented subsequently.

The starting point for these developments is the usual formula for the derivative of the composition of two
functions, namely

d
dt

f
(
g(t)

)
= f ′

(
g(t)

)
g′(t)

whenever this formula makes sense. Note that an equivalent formulation of this equality can be written as

f
(
g(b)

)
= f

(
g(a)

)
+

∫ b

a
f ′
(
g(t)

)
g′(t)dt.

This equality is valid for the usual Riemann integral, but what is then its analog for the Itô integral ? The
answer corresponds precisely to Itô’s lemma. For its statement, we recall that Ck(R) denotes the set of k-times
continuously differentiable functions on R.

Theorem 4.4.1 (Itô’s lemma). Let B :=
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-dimensional Brownian

process, and let f ∈ C2(R). Then the following equality holds:

f (Bt) = f (0) +
∫ t

0
f ′(Bs)dBs +

1
2

∫ t

0
f ′′(Bs)ds. (4.4.1)

Let us sketch the proof, and refer to a [11, Thm. 4.14] for the final technical (but essential) argument. A proof
of Itô’s lemma can be found in almost all books on stochastic calculus. An accessible one is for example
provided in [12, Sec. 7.2].

Proof. First of all, observe that the integrals in (4.4.1) are well defined, by Corollary 4.2.11. Then, let Pℓ be
a partition of [0, t]. By the telescopic formula, one has

f (Bt) = f (0) +
nℓ−1∑
j=0

(
f
(
Btℓj+1

)
− f

(
Btℓj

))
.
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By Taylor formula for each term in the sum one has

f
(
Btℓj+1

)
− f

(
Btℓj

)
= f ′

(
Btℓj

) (
Btℓj+1
− Btℓj

)
+ 1

2 f ′′(θℓj)
(
Btℓj+1
− Btℓj

)2

for some θℓj ∈
(
Btℓj
, Btℓj+1

)
. As a consequence, one infers that

f (Bt) = f (0) +
nℓ−1∑
j=0

f ′
(
Btℓj

) (
Btℓj+1
− Btℓj

)
+ 1

2

nℓ−1∑
j=0

f ′′(θℓj)
(
Btℓj+1
− Btℓj

)2.

By definition of the Itô integral, the second term on the r.h.s. converges to
∫ t

0 f ′(Bs)dBs as |Pℓ| → 0. Depend-
ing on f this convergence is either taking place in the L2-sense, or in probability, see [11, Examples 4.3 to 4.5]
for various examples. The type of convergence depends if f (B) ∈ M2([0, t]) or if f (B) ∈ M2

loc
(
[0,T ]

)
. Then,

the third term on the r.h.s converges in probability to 1
2

∫ t
0 f ′′(Bs)ds. This technical part is shown for example

in [11, Thm. 4.14]. □

As a first application of this result, observe that if we consider f : R ∋ x 7→ x2 ∈ R, then one gets

B2
t = 2

∫ t

0
Bs dBs +

1
2

∫ t

0
2ds

which easily leads to (4.2.6). More generally, observe that the equality (4.4.1) can be rewritten as∫ t

0
f ′(Bs)dBs = f (Bt) − f (0) − 1

2

∫ t

0
f ′′(Bs)ds

which is helpful for the computation of the l.h.s. of this equality.

Remark 4.4.2. The fact that for any g ∈ C(R) one has

lim
|Pℓ |→0

nℓ−1∑
j=0

g(θℓj)
(
Btℓj+1
− Btℓj

)2
=

∫ t

0
g(Bs)ds

for any θℓj ∈
(
Btℓj
, Btℓj+1

)
and with a convergence in probability is sometimes explained by heuristic arguments.

Some authors say that (∆ jB)2 is of order ∆ jt, with ∆ jB := Btℓj+1
− Btℓj

and ∆ jt := tℓj+1 − tℓj. Other authors
write dt = dBt · dBt, but we shall refrain from using such notations. In fact, a very much related result has
already been mentioned in Theorem 2.4.8 when mentioning the convergence of the quadratic variation of the
1-dimensional Brownian process.

Exercise 4.4.3. 1) Show that the following formula holds

B3
t = 3

∫ t

0
B2

s dBs + 3
∫ t

0
Bs ds.

2) Set Yt :=
∫ t

0 Bs ds, and consider the process Y := (Yt)t≥0. Show that Y is a Gaussian process with E(Yt) = 0

for any t ≥ 0 and that E
(
YsYt

)
= s2t

2 −
s3

6 for 0 ≤ s < t. In particular Var(Tt) = t3
3 . We refer to [1, Example

5.26] for hints and for an illustration of this process.
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Let us directly provide a slightly generalized version of Itô’s lemma, when the function f depends of two
variables, namely for functions of the type (t, x) 7→ f (t, x) ∈ R. The proof is quite similar but involves Taylor
expansion for functions of 2 variables, and therefore partial derivatives are involved. For that purpose, let us
introduce the notation ∂t f for the derivative of f with respect to its time variable, and ∂x f for its derivative
with respect to its space variable.

Proposition 4.4.4. Let B :=
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-dimensional Brownian process, and

let f : R2 → R be continuous and with ∂t f , ∂x f , and ∂2
x f (second derivative with respect to its space variable)

also continuous. Then the following equality holds:

f (t, Bt) = f (0, 0) +
∫ t

0
[∂x f ](s, Bs)dBs +

∫ t

0

{
[∂t f ](s, Bs) + 1

2 [∂2
x f ](s, Bs)

}
ds, (4.4.2)

Note that the continuity requirements on the derivatives of f ensure that the conditions of Definition 4.2.9 are
satisfied for the term involving a stochastic integral. Clearly, if f does not depend explicitly on the variable t,
this statement corresponds to Itô’s lemma.

Remark 4.4.5. According to Theorem 4.3.1 and to the subsequent paragraph, the Itô integral
∫ t

0 Xu dBu

defines a martingale if X ∈ M2([0,T ]
)

or a local martingale if X ∈ M2
loc

(
[0,T ]

)
. Thus, by rewriting (4.4.2) as∫ t

0
[∂x f ](s, Bs)dBs = f (t, Bt) − f (0, 0) −

∫ t

0

{
[∂t f ](s, Bs) + 1

2 [∂2
x f ](s, Bs)

}
ds,

it is sometimes possible to deduce when the r.h.s. is a martingale or a local martingale.

The following exercises are applications of Itô’s lemma or its slightly generalized version, see Theorem 4.4.1
or Proposition 4.4.4.

Exercise 4.4.6. By considering the function f (t, x) = tx2, write an expression (as simple as possible) for the
Itô integral

∫ t
0 sBs dBs, see also [12, Example 7.3.2].

Exercise 4.4.7 (The Itô exponential). Consider the function f (t, x) = ex− 1
2 t and show that∫ t

0
f (s, Bs)dBs = f (t, Bt) − f (0, 0).

Observe that for the usual exponential function one has
∫ t

0 es ds = et − e0, and for this reason the function f
is sometimes called the Itô exponential.

Exercise 4.4.8. Set f (t, x) := e(c− 1
2σ

2)t+σx for c ∈ R and σ > 0, and consider the process Xt := f (t, Bt). Show
that

Xt = X0 + c
∫ t

0
Xs ds + σ

∫ t

0
Xs dBs.

Exercise 4.4.9 (r). Study and report on the gambler’s ruin for Brownian process with drift, as presented in
[1, Sec. 5.5].

4.5 N-dimensional Itô integral

As seen in Definition 2.4.10 the N-dimensional Brownian process consists of N independent 1-dimensional
Brownian processes. For that reason, the Itô integral can be generalized “straightforwardly” to the N-dimen-
sional case. Let us concentrate on the analog of Itô’s lemma in this framework [1, Thm. 6.6] :
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Theorem 4.5.1. Let B :=
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard N-dimensional Brownian process, and let

f ∈ C2(RN). Then the following equality holds:

f (Bt) = f (0) +
N∑

j=1

∫ t

0
[∂ j f ](Bs)dB j

s +
1
2

∫ t

0

N∑
j=1

[∂2
j f ](Bs)ds, (4.5.1)

where Bs =
(
B1

s , B
2
s , . . . , B

N
s
)T are the components of Bs.

Let us immediately observe that the previous equality can be rewritten with shorter notations:

f (Bt) = f (0) +
∫ t

0

(
[∇ f ](Bs)

)T dBs +
1
2

∫ t

0
[∆ f ](Bs)ds.

It is interesting to observe that the mixed partial derivatives of f do not appear in this formula. In addition, if
the function f also depends explicitly on the time parameter and satisfies the necessary regularity conditions
on the partial derivatives, then the following equality [1, Thm. 6.11] also holds

f (t, Bt) = f (0, 0) +
∫ t

0

(
[∇ f ](s, Bs)

)T dBs +

∫ t

0

{
[∂t f ](s, Bs) + 1

2 [∆ f ](s, Bs)
}
ds. (4.5.2)

Based on these formulas and on the notion of harmonic functions, the following important result can be proved.
It corresponds to the N-dimensional generalization of the 1-dimensional result provided in Proposition 3.2.24.

Theorem 4.5.2. Let B :=
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard N-dimensional Brownian process starting

at x ∈ RN at time t = 0. Let r < ∥x∥ and define the stopping time τr by

τr(ω) := min{t ≥ 0 | ∥Bt(ω)∥ ≤ r}

which corresponds to the first hitting time of the ball centered at 0 and of radius r. Then one has P(τr < ∞) = 1
if N = 2, and P(τr < ∞) =

( r
∥x∥

)N−2 if N ≥ 3. In particular, for N ≤ 2 the paths are recurrent, meaning that
they come back to a neighborhood of the origin infinitely many times, while for N ≥ 3 each path will eventually
never come back to a neighborhood of the origin (transient behavior).

Exercise 4.5.3 (Recurrence and transience of Brownian process (r)). Study and report on the proof of the
previous theorem. It is provided in many textbooks, as for example in [1, Sec. 6.3].
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Chapter 5

Itô processes and stochastic differential
equations

If we look back at Itô’s lemma, the main equality can be written in a differential form as

d f (Bt) = f ′(Bt)dBt +
1
2 f ′′(Bt)dt.

The meaning of this notation is the one given by (4.4.1), but this formulation is convenient and short. Similarly,
observe that (4.4.2) can be rewritten as

d f (t, Bt) = [∂x f ](t, Bt)dBt +
{
[∂t f ](t, Bt) + 1

2 [∂2
x f ](t, Bt)

}
dt.

and the N-dimensional version of (4.5.2) as

d f (Bt) =
(
[∇ f ](t, Bt)

)T dBt +
{
[∂t f ](t, Bt) + 1

2 [∆ f ](t, Bt)
}
dt.

In this chapter, we shall constantly use these notations, and develop the notion of stochastic differential equa-
tions. However, the true meaning of these equations is always their integral analogs.

5.1 Itô processes

We start with the main definition of this section.

Definition 5.1.1 (Itô process, stochastic differential). Let B :=
(
Ω,F ,P, (Ft)t≥0, (Bt)t≥0

)
be the standard 1-

dimensional Brownian process, let V = (Vt)t∈[0,T ] and D = (Dt)t∈[0,T ] be adapted and univariate stochastic
processes, with V ∈ M2

loc
(
[0,T ]

)
and D ∈ M1

loc
(
[0,T ]

)
, and let X0 is a F0-measurable random variable. The

process X := (Xt)t∈[0,T ] defined by

Xt = X0 +

∫ t

0
Vs dBs +

∫ t

0
Ds ds, (5.1.1)

is called a Itô process or an integral process. The relation (5.1.1) is also written

dXt = Vt dBt + Dt dt. (5.1.2)

It is said that the stochastic process X has the stochastic differential (5.1.2)
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Note that the letters used for defining this process are not at all uniform in the literature. For the notations
currently used, V is called the local volatility and D is called the local drift. Let us stress that (5.1.2) has no
meaning in itself, it is a short notation of (5.1.1). In addition, an initial value has to be prescribed, since (5.1.2)
does not contain any information for the time t = 0.

The simplest case of (5.1.1) is when Vt and Dt are real constants. Another special instance of Itô processes
can defined when the two processes V and D depend on X only.

Definition 5.1.2 (Time-homogeneous / time-inhomogeneous diffusion process). The Itô process satisfying

dXt = σ(Xt)dBt + µ(Xt)dt

with σ, µ : R→ R is called a time-homogeneous diffusion process, while the Itô process satisfying

dXt = σ(t, Xt)dBt + µ(t, Xt)dt

is called a time-inhomogeneous diffusion process. For these definitions, the stochastic processes must be
adapted,

(
σ(Xt)

)
t∈[0,T ] and

(
σ(t, Xt)

)
t∈[0,T ] must belong to M2

loc
(
[0,T ]

)
, while

(
µ(Xt)

)
t∈[0,T ] and

(
µ(t, Xt)

)
t∈[0,T ]

must belong to M1
loc

(
[0,T ]

)
,

Exercise 5.1.3. Write formulas similar to (5.1.2) for the stochastic processes mentioned in Examples 2.2.3 to
2.2.6. Discuss also the content of Examples 7.3 and 7.4 of [1].

The notion of quadratic variation for a general process has been introduced in (4.3.1), and the quadratic
variation for process of the form Yt :=

∫ t
0 Xu dBu has been computed in Proposition 4.3.6. It turns out that for

more general Itô processes the result is still valid. Namely, if X is a Itô process of the form (5.1.1), then its
quadratic variation satisfies

[X]t =

∫ t

0
V2

s ds. (5.1.3)

We provide below the analog of Itô’s lemma for general Itô processes. Note that we directly state the version
with a function f which can also have an explicit dependence on time. It thus corresponds to a generalization
of Proposition 4.4.4, see [12, Thm. 7.4.3]. As before, the proof relies essentially on a Taylor expansion, but
technicalities are also necessary [1, Prop. 7.7 & Thm. 7.8].

Proposition 5.1.4 (Itô’s lemma for Itô process). Let X be a Itô process of the form dXt = Vt dBt + Dt dt, and
let f : R2 → R be continuous and with ∂t f , ∂x f , and ∂2

x f also continuous. Then the following equality hold
for any s ≤ t:

f (t, Xt) = f (s, Xs) +
∫ t

s
Vu[∂x f ](u, Xu)dBu +

∫ t

s

{
[∂t f ](u, Xu) + Du[∂x f ](u, Xu) + 1

2 (Vu)2[∂2
x f ](u, Xu)

}
du

= f (s, Xs) +
∫ t

s

{
[∂t f ](u, Xu) + 1

2 (Vu)2[∂2
x f ](u, Xu)

}
du +

∫ t

s
[∂x f ](u, Xu)

(
Vu dBu + Du du

)
= f (s, Xs) +

∫ t

s
[∂x f ](u, Xu)dXu

∫ t

s

{
[∂t f ](u, Xu) + 1

2 (Vu)2[∂2
x f ](u, Xu)

}
du.

Thus, in this statement we have naturally introduced a Itô integral with respect to the stochastic process X
instead of the Brownian process B. In fact we can even generalize this notation by considering a second
stochastic process Y = (Yt)t∈[0,T ], adapted to the Brownian process and satisfying

∫ T
0 Y2

t V2
t dt < ∞ and∫ T

0 |YtDt|dt < ∞, then one sets for t ∈ (0,T ]∫ t

0
Yu dXu :=

∫ t

0
YuVu dBu +

∫ t

0
YuDu du.
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Exercise 5.1.5. By using the previous statement, check that the quadratic variation provided in (5.1.3) can
also be expressed as

[X]t = X2
t − X2

0 − 2
∫ t

0
Xu dXu.

Exercise 5.1.6. Consider the Itô process satisfying

dXt = Xt dBt +
1
2 Xt dt, X0 = x0,

and assume that Xt ≥ 0 for all t ≥ 0. By applying Proposition 5.1.4 to the function t 7→ ln(Xt), show that one
solution of this equation is Xt = x0 eBt .

Exercise 5.1.7 (Langevin equation). Consider the Itô process satisfying

dXt = −βXt dt + αdBt, X0 = x0, (5.1.4)

for α ∈ R and β > 0. This equation is called the Langevin equation. Note that this equation can be written
equivalently

Xt = x0 + αBt − β

∫ t

0
Xs ds.

Show that the solution of this equation reads

Xt = e−βt x0 + α

∫ t

0
e−β(t−u) dBu. (5.1.5)

Inspiration can be obtained from [1, Example 7.9], [11, Example 5.6], or from [12, Example 7.4.5]. Reference
[13, Example 3.2.5] also discusses this problem and its solution in details. The process defined by (5.1.5) is
also called the Ornstein-Uhlenbeck process, see also Example 2.2.6.

Let us still consider the case when two Itô processes are involved, both constructed with respect to the same
Brownian process.

Lemma 5.1.8. For j ∈ {1, 2}, let X j be a Itô process of the form dX j
t = V j

t dBt + D j
t dt, and let f : R3 → R be

continuous, with ∂t f continuous, and with continuous partial derivatives with respect to the space variables
up to order two. Then the following equality hold for any s ≤ t:

f (t, X1
t , X

2
t ) = f (s, X1

s , X
2
s ) +

∫ t

s
[∂t f ](u, X1

u , X
2
u)du +

2∑
j=1

∫ t

s
[∂ j f ](u, X1

u , X
2
u)dX j

u

+ 1
2

2∑
j=1

2∑
k=1

∫ t

s
[∂ j∂k f ](u, X1

u , X
2
u)V1

u V2
u du.

From the previous formula, if we consider f (t, x1, x2) = x1x2, then we get:

Lemma 5.1.9 (Integration by parts). For j ∈ {1, 2}, let X j be a Itô process of the form dX j
t = V j

t dBt + D j
t dt.

Then one has
d
(
X1

t X2
t
)
= X2

t dX1
t + X1

t dX2
t + V1

t V2
t dt. (5.1.6)

Exercise 5.1.10. Rewrite the content of (5.1.6) in an integral form, as explicitly as possible.
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Exercise 5.1.11. For f ∈ C1([0,T ]
)

and for t ∈ [0,T ] prove the following equality:∫ t

0
f (s)dBs = f (t) Bt −

∫ t

0
f ′(s) Bs ds.

Exercise 5.1.12. Consider N Itô processes of the form dX j
t = V j

t dBt + D j
t dt, and let f : RN+1 → R be

continuous, with ∂t f continuous, and with continuous partial derivatives with respect to the space variables
up to order two. Write the analog of Lemma 5.1.8 in this framework.

Exercise 5.1.13. Study some of the examples 7.10 to 7.13 provided in [1].

5.2 Stochastic differential equations

Let f : Rm+2 → R be a sufficiently regular function, and consider x : R → R also sufficiently regular. A
deterministic differential equation for x is an equation of the form

f
(
t, x(t), x′(t), x′′(t), . . . , x(m)(t)

)
= 0 (5.2.1)

for t ∈ [0,T ], where x(m) denotes the mth-derivative of x. The function x is called the unknown. Usually,
equation (5.2.1) is provided with a set of initial conditions, as for example x(0) = x0, x′(0) = x′0, etc. Other
types of initial conditions are also possible. Well-known examples of such equations are

c x(t) − x′(t) = 0, c ∈ R,

or
mx′′(t) + kx(t) = 0, m, k > 0,

or
x′′(t) − mg = 0, m > 0, g = 9.81...

Note that the first example is a first order differential equation, while the second and the third examples are
second order differential equations. There exist various techniques for solving these equations, but quite often
only numerical solutions can be exhibited.

The simplest examples of differential equations are first order differential equations of the form

x′(t) = f
(
t, x(t)

)
, x(0) = x0

for some f : R2 → R sufficiently regular. Note that this equation does not cover all first order differential
equations, but only a very specific subfamily. Quite informally, this equation can be rewritten as

dx(t) = f
(
t, x(t)

)
dt, x(0) = x0, (5.2.2)

and its solution can be written as

x(t) = x0 +

∫ t

0
f
(
s, x(s)

)
ds.

Let us now introduce some randomness in this formalism. The easiest way is to add some randomness in the
initial conditions. For example, one can modify (5.2.2) and get the equation

dXt = f
(
t, Xt

)
dt, X0 = Y,
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with Y a random variable on some probability space (Ω,F ,P)7. Such an equation is called random differential
equation and can be solved separately for each initial condition Y(ω), ω ∈ Ω. Such an approach is interesting
when the initial condition is not precisely known, or for the study of the sensitivity to the initial conditions.

A more interesting way to add randomness in the deterministic equations can be performed by adding a
random noise term, at any time. With this approach, (5.2.2) becomes

dXt = f
(
t, Xt

)
dt + σ

(
t, Xt

)
dBt, X0 = Y, (5.2.3)

still with Y a random variable on some probability space (Ω,F ,P), and where B denotes the 1-dimensional
standard Brownian process. For this equation, the randomness is due to the initial condition and to the noise
generated by the Brownian process, at any time. The equation (5.2.3) is called a Itô stochastic differential
equation, and the Brownian process is called the driving process in this equation. If a solution of this equation
exists, observe that it corresponds to a time-inhomogeneous diffusion process, as introduced in Definition
5.1.2. Note that it is possible to replace the Brownian process by other driving processes, but this necessitates
a more advanced theory. However, this is necessary for modelling jumps, since the Brownian process is
continuous.

As emphasized at the beginning of this chapter, (5.2.3) should be interpreted through its integral version,
namely through the equation

Xt = X0 +

∫ t

0
f
(
s, Xs

)
ds +

∫ t

0
σ
(
s, Xs

)
dBs. (5.2.4)

However, it is then necessary to ensure that some minimal regularity conditions are satisfied, as for example
s 7→ f

(
s, Xs

)
∈ M1

loc
(
[0,T ]

)
and s 7→ σ

(
s, Xs

)
∈ M2

loc
(
[0,T ]

)
for some T > 0. Note that since the process X is

not known yet, it is not possible to check a priori these conditions. Before begin able to check this regularity
condition, it is even more fundamental to know if (5.2.4) admits any solution ? If it exists, is this solution
unique or is there a family of solutions ? And in which sense can one speak about a solution ?

Definition 5.2.1 (Strong solution). A strong solution to the Itô stochastic differential equation (5.2.3) is a
stochastic process X = (Xt)t∈[0,T ] for some T > 0 such that X is adapted to the standard Brownian process B
and such that s 7→ f

(
s, Xs

)
∈ M1

loc
(
[0,T ]

)
and s 7→ σ

(
s, Xs

)
∈ M2

loc
(
[0,T ]

)
.

Let us stress that all solutions of the exercises considered so far are strong solutions. Subsequently, we shall
mention another type of solutions, the weak solutions.

Exercise 5.2.2. This exercise is a continuation of Exercise 5.1.6. Consider the stochastic differential equation

dXt = σXt dBt + rXt dt, X0 = 1. (5.2.5)

Show that the solution of this equation is given by the geometric Brownian process

Xt = e(r−σ2/2)t+σBt .

This stochastic process was already mentioned in Exercise 3.2.5, see also [11, Examples 5.1 & 5.5], and has
application in finance, see [11, Example 5.9]. One pedestrian solution of this problem is also proposed in
[13, p. 140].

7Observe that we moved the time dependence to an index, since Xt is now a function defined on Ω.
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Exercise 5.2.3. Study the stochastic differential equation

dXt = σ(t)dBt

with a non-random continuously differentiable function σ, see [11, Example 5.4]. Make the link with Wiener
integral, see Theorem 4.3.4.

Remark 5.2.4. One method for solving stochastic differential equations is to use Stratonovich calculus. It
essentially consists in replacing the left rule of Itô integral by a mid-interval rule. More explicitly, the
Stratonovich approximating sum for

∫ t
0 Xs dBs is given for a partition Pℓ by

1
2

nℓ∑
j=1

(
Xtℓj
+ Xtℓj+1

)(
Btℓj+1
− Btℓj

)
and the general case is obtained by a limiting process in the L2-sense. Stratonovich calculus has rules which
are slightly different from Itô calculus, but these two calculus complement each other. We do not develop this
topic, but refer to [13, Sec. 2.4] for an introduction to this calculus and to [13, Sec. 3.2.3] for its use. Another
precise construction is provided in [11, Sec. 5.9], with the link between Stratonovich stochastic differential
equations and Itô stochastic differential equations.

Let us now look at a few examples of stochastic differential equations, starting with the stochastic exponential,
see also Exercise 4.4.7. Consider a stochastic differential X, see Definition 5.1.1, and let U satisfy

dUt = Ut dXt, U0 = 1. (5.2.6)

Equivalently, this equation reads Ut = 1 +
∫ t

0 Us dXs. We say in this case that U is the stochastic exponential
of X. In this setting one has:

Lemma 5.2.5. If X is a Itô process, the solution of (5.2.6) is given by

Ut = eXt−X0−
1
2 [X]t ,

where [X]t denotes the quadratic variation of X defined in (4.3.1).

The proof of this statement is given in [11, Thm. 5.2] and can be studied as an exercise. Note that for general
initial condition U0 the solution is given by Ut = U0eXt−X0−

1
2 [X]t . Quite interestingly and unlike the usual

exponential, the expression for Ut requires the knowledge of the full process up to time t, since the quadratic
variation [X]t requires such a knowledge. Note that there also exists a stochastic logarithm, which is presented
in [11, Thm. 5.3].

The set of linear stochastic differential equations also admit explicit solutions. More precisely, consider the
linear equation

dXt =
(
αt + βtXt

)
dt +

(
γt + δtXt

)
dBt, (5.2.7)

with α, β, γ, δ continuous and univariate stochastic processes adapted to the standard 1-dimensional Brownian
. The general solution takes the form

Xt := Ut
(
X0 +

∫ t

0

αs − δsγs

Us
ds +

∫ t

0

γs

Us
dBs

)
, (5.2.8)

where U = (Us)s≥0 is the solution of the initial problem when α = 0 and γ = 0 and is given by

Us := U0 exp
( ∫ s

0

(
βu −

1
2δ

2
u
)
du +

∫ s

0
δu dBu

)
.
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Observe that Exercises 5.1.6, 5.1.7, 5.2.2, and 5.2.3 correspond to linear stochastic differential equations. The
Brownian bridge, already mentioned in Example 2.2.4 is also the solution of a linear stochastic differential
equation, see [11, p. 133–134] for the details.

Exercise 5.2.6. Study and report on the general solution (5.2.8), getting inspiration from [11, Sec. 5.3].
Detailed explanations are also provided in [13, Sec. 3.3].

Let us now state a sufficient condition for the existence of a strong solution of (5.2.3). Clearly, providing a
necessary and sufficient condition is often impossible. The following statement is proved in [7, Thm. 5.1.1],
see also [2, Thm. 9.4].

Theorem 5.2.7. Let B be the standard 1-dimensional Brownian process, and assume that the random variable
Y is independent of Bt for any t ∈ [0,T ] and satisfies E(Y2) < ∞. Let f , σ : [0,T ]×R→ R be locally Lipschitz
in x uniformly in t, namely for any N > 0 there exists K > 0 such that for |x| ≤ N, |y| ≤ N, and all t ∈ [0,T ]
one has

| f (t, x) − f (t, y)| + |σ(t, x) − σ(t, y)| < K|x − y|.

In addition, assume that the functions f and σ satisfy the sublinear growth condition

| f (t, x)| + |σ(t, x)| ≤ K(1 + |x|) ∀x ∈ R.

Then the Itô stochastic differential equation

dXt = f
(
t, Xt

)
dt + σ

(
t, Xt

)
dBt, X0 = Y, (5.2.9)

has a unique strong solution X on [0,T ], which is continuous and belong to M2([0,T ]
)
.

Observe that the local Lipschitz condition is satisfies if the functions f and g are differentiable with respect
to x, with bounded derivatives for any |x| ≤ N and |y| ≤ N and all t ∈ [0,T ]. Obviously, this is satisfies if
the partial derivatives are continuous. Let us stress that other sets of conditions also exist, leading also to
existence and uniqueness of the solution of (5.2.9). For example, [1, Thm. 7.21] contains a set of conditions
for the existence and uniqueness of the solution of a simplified stochastic differential equation under stronger
regularity conditions but a weaker growth condition.

Remark 5.2.8. Quite interestingly, it is also possible to consider a stochastic differential equation with two
(or more) independent driving Brownian processes. We do not develop the theory, but refer to [13, Example
3.2.8] for an example. Note that the related construction is different from the one sketched in Lemma 5.1.8.

As already mentioned, there also exists a second type of solutions to the stochastic differential equation
(5.2.3) : the weak solutions. The main difference with the strong solutions is that the setting is not defined a
priori.

Definition 5.2.9 (Weak solution). Consider the stochastic differential equation

dXt = f
(
t, Xt

)
dt + σ

(
t, Xt

)
dBt. (5.2.10)

Given an initial condition Y, a weak solution of (5.2.10) consists of a 1-dimensional Brownian process B̂ =(
Ω,F ,P, (Ft)t≥0,

(
B̂t

)
t≥0

)
and a stochastic process X̂ adapted to B̂ such that the following integrals are well

defined and satisfy the equality

X̂t = Y +
∫ t

0
f
(
s, X̂s

)
ds +

∫ t

0
σ
(
s, X̂s

)
dB̂s

for all t ∈ [0,T ] and some T > 0.
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Let us emphasize that in the definition of weak solutions, the filtered probability space and the Brownian
process are not specified a priori, they are part of the solution. Clearly, any strong solution is also a weak
solution, but the converse is not true. For weak solutions, the notion of uniqueness can only be defined with the
induced probability measure, since the underlying probability spaces can be different for two weak solutions:
two weak solutions are equal if they define the same induced probability distribution.

Let us still mention a theorem about the existence of weak solutions, which complements Theorem 5.2.7.
Again, the content is a sufficient condition, not a necessary one. We refer to [11, Thm. 5.11] for the statement,
and for the references mentioned there for its proof.

Theorem 5.2.10. Consider the stochastic differential equation

dXt = f
(
t, Xt

)
dt + σ

(
t, Xt

)
dBt. (5.2.11)

Assume that σ is positive and continuous, and for any T > 0 that there exists KT > 0 such that

| f (y, x)| + |σ(t, x)| ≤ KT (1 + |x|) ∀x ∈ R and t ∈ [0,T ].

Then there exists a unique weak solution to (5.2.11) starting at any x0 ∈ R and at any time t ≥ 0.

Observe that this statement corresponds to a deterministic initial condition, since the initial condition is given
for any fixed x0 ∈ R. Additional information about weak solutions can be found in [11, Sec. 5.7].
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Chapter 6

Markov processes

In this chapter, we provide several definitions and results related to Markov processes. We also relate these
processes to the solutions of the differential equations seen in the previous chapter.

6.1 Markov property

Stochastic processes with the Markov property are processes with no memory ! Their theory is well-developed
and these processes play an enormous role in many applications. We provide here the main definitions and
a few results. Note that the discrete time version is rather easy to understand and has several applications as
well. They are often part of a course on probability. Here, we focus on the continuous time version.

Definition 6.1.1 (Markov property). Let X =
(
Ω,F ,P, (Ft)t≥0, (Xt)t≥0

)
be a stochastic process taking values

in a standard measurable space (Λ,E). Then X possesses the Markov property if for any A ∈ E and any
0 ≤ s < t

E
(
1A(Xt)|Fs

)
= E

(
1A(Xt)|Xs

)
a.s. (6.1.1)

We recall that conditional expectation E
(
1A(Xt)|Xs

)
means E

(
1A(Xt)|σ(Xs)

)
with σ(Xs) the σ-algebra gener-

ated by Xs. There exist several reformulations of the above condition. For example, some authors write

P
(
Xt ∈ A|Fs

)
= P

(
Xt ∈ A|Xs

)
a.s.

instead of (6.1.1). It is also equivalent to require that

E
(
f (Xt)|Fs

)
= E

(
f (Xt)|Xs

)
a.s.

for all bounded and measurable functions f : Λ→ R. The meaning of these requirements is that the informa-
tion about the system at the time t given Fs does not depend on the history before time s but only on the state
of the system at time s.

A special instance of the Markov property is very useful and convenient:

Definition 6.1.2 (Homogeneous Markov property). Let X =
(
Ω,F ,P, (Ft)t≥0, (Xt)t≥0

)
be a stochastic pro-

cess taking values in a standard measurable space (Λ,E). Then X possesses the time-homogeneous Markov
property, or simply the homogeneous Markov property if for any A ∈ E and any 0 ≤ s < t

P
(
Xt ∈ A|Fs

)
= P

(
Xt−s ∈ A|X0

)
a.s. (6.1.2)
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Remark 6.1.3. Some authors call Markov process any stochastic process with the Markov property, and time-
homogeneous Markov process, or simply homogeneous Markov process any process with the homogeneous
Markov property. Other authors also assume some implicit regularity (right continuity, continuity, etc) when
defining Markov processes. We shall refrain assuming any such additional condition and stick to the simplest
definitions.

Exercise 6.1.4. Show that the standard 1-dimensional Brownian process has the time-homogeneous Markov
property, see for example [1, p. 177–178] and [11, Thm. 3.9]. Note that the same result holds for the standard
N-dimensional Brownian process as well.

Exercise 6.1.5. Recall the definition of the Markov property for discrete time stochastic processes.

Another concept is deeply related to the Markov property:

Definition 6.1.6 (Markov transition function). Let (Λ,E) be a measurable space. A function

p : R+ × R+ × Λ × E → [0, 1]

satisfying

1. For any fixed s, t ∈ R+ and A ∈ E, the map p(s, t, ·, A) : Λ→ [0, 1] is measurable,

2. For any fixed s, t ∈ R+ and y ∈ Λ, the map p(s, t, y, ·) : E → [0, 1] is a probability measure,

3. The Chapman-Kolmogorov equation

p(s, t, y, A) =
∫
Λ

p(u, t, z, A) p(s, u, y, dz) (6.1.3)

for every s < u < t, is called a Markov transition function on (Λ,E).

The exact interpretation of the Chapman-Kolmogorov equation will be discussed soon. Let us now link with
the initial Markov process.

Definition 6.1.7 (Markov process associated to a transition function). Let (Λ,E) be a standard measurable
space, and let p be a Markov transition function on (Λ,E). A stochastic process X =

(
Ω,F ,P, (Ft)t≥0, (Xt)t≥0

)
taking values in Λ is said to be a Markov process associated to p if for any bounded and measurable function
f : Λ→ R and any 0 ≤ s < t one has

E
(
f (Xt)|Fs

)
=

∫
Λ

f (x) p(s, t, Xs, dx), a.s. (6.1.4)

Observe that if f = 1A for some A ∈ E, then the equality (6.1.4) reads

P
(
Xt ∈ A|Fs

)
= E

(
1A(Xt)|Fs

)
= p(s, t, Xs, A) a.s. (6.1.5)

Therefore, by Proposition 3.1.3 (5. and then 2.) one has

E
(
1A(Xt)|Xs

)
≡ E

(
1A(Xt)|σ(Xs)

)
= E

(
E
(
1A(Xt)|Fs

)∣∣∣σ(Xs)
)

= E
(
p(s, t, Xs, A)

∣∣∣σ(Xs)
)
= p(s, t, Xs, A) = E

(
1A(Xt)|Fs

)
a.s.,

which means that any process associated to a Markov transition function is a Markov process.
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Remark 6.1.8. It is shown in [7, Thm. 2.1.1] that for any Markov transition function p on RN it is possible
to construct a Markov process associated to it. This result clearly extends to the set of all Markov transition
function on standard measurable spaces. In [2, p.155–157] the same construction is provided for any com-
plete, separable metric space Λ, endowed with its σ-algebra of Borel sets. On the other hand, the Markov
property seems not to be sufficient for guarantying the existence of a Markov transition function.

Let us now discuss the meaning of the formalism introduced so far. First of all, let us rewrite (6.1.4) as

E
(
f (Xt)|Xs

)
=

∫
Λ

f (x) p(s, t, Xs, dx), a.s.

By comparing this equality with (3.1.11), one infers that for any A ∈ E

p(s, t, y, A) = P(Xt ∈ A|Xs = y) = E(1A(Xt)|Xs = y)

with the notation introduced in the paragraph following (3.1.11). Thus,
(
p(s, t, y, ·)

)
y∈Λ corresponds to the

conditional probability of Xt given Xs, see Definition 3.1.9. It then follows that p(s, t, y, A) represents the
probability that the process, being at position y at time s, will move to a position in the set A at time t.
Similarly, the Chapman-Kolmogorov equation (6.1.3) means that if s < u < t the probability of moving from
position y at time s to a position in A at time t is equal to the probability of moving to a position z at the
intermediate time u, and then from z to A at time t, integrated over all possible positions z.

Exercise 6.1.9. Describe the transition function for stochastic processes in discrete time and taking values in
a discrete (or finite) set.

The existence of a transition function makes most of the computations relatively easy and explicit. For exam-
ple, let us compute E

(
f1(Xt) f2(Xs)

)
for f1, f2 two bounded and measurable real functions on Λ, and for s < t.

Then, by using the intermediate conditioning formula (3.1.6) one gets

E
(
f1(Xs) f2(Xt)

)
= E

(
f1(Xs)E

(
f2(Xt)|Fs

))
= E

(
f1(Xs)

∫
Λ

f2(x)p(s, t, Xs, dx)
)

=

∫
Λ

f1(y)
[ ∫
Λ

f2(x)p(s, t, y, dx)
]
µs(dy),

where µs is the induced probability measure of Xs on Λ. If s = 0, observe that this formula depends only on
the initial distribution µ0 and on the transition function p

Exercise 6.1.10. Generalize the previous formula for a sequence t0 < t1 < t2 < · · · < tn and for a family of
bounded and measurable functions f j : Λ→ R. More precisely, compute

E
(
f0(Xt0) f1(Xt1) . . . fn(tn)

)
.

If t0 = 0, observe that this formula depends only on the initial distribution µ0 and on the transition function p.

Exercise 6.1.11. Study the Markov transition function based on the Gaussian distribution, as presented in [2,
Example 6.1].

Let us finally come back to the time-homogeneous Markov property introduced in Definition 6.1.2. We
consider a homogeneous Markov process X associated to a Markov transition function p. By using the time-
homogeneity condition (6.1.2) and relation (6.1.5) one infers that for 0 ≤ s < t

p(s, t, Xs, A) = P
(
Xt ∈ A|Fs

)
= P

(
Xt−s ∈ A|X0

)
= p(0, t − s, X0, A) a.s.
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Thus, if we set p(h, y, A) := p(0, h, y, A) for any h ≥ 0, y ∈ Λ and A ∈ E, then we infer that a Markov process
with Markov transition probability p is time-homogeneous if

p(s, t, Xs, A) = p(0, t − s, X0, A) = p(t − s, X0, A). (6.1.6)

In this case, the Chapman-Kolmogovov equation takes the form

p(t, y, A) =
∫
Λ

p(t − s, z, A) p(s, y, dz) (6.1.7)

for any 0 ≤ s < t.

In the final exercise, the link between stochastic differential equations and Markov processes is established.
Namely, it is shown that diffusion processes with regular functions possess the Markov property.

Exercise 6.1.12. Under sufficient regularity, show that a time-homogeneous diffusion process, as introduced
in Definition 5.1.2, is a time-homogeneous Markov process. Inspiration can be obtained from [1, Thm. 8.4].
More generally, show that any time-inhomogeneous diffusion process is a Markov process, see [11, Thm. 5.6]
and [2, Sec. 9.7]. Note that a Markov transition function can be defined for these processes.

6.2 Feller and strong Markov properties

Let us start by recalling that the notion of stopping time has been introduced in Definition 3.2.10 and that the
σ-algebra Fτ has been defined in (3.2.1). This σ-algebra contains the events which took place before or up to
time τ. A stronger notion of Markov property is expressed in terms of stopping time.

Definition 6.2.1 (Strong Markov property). Let X =
(
Ω,F ,P, (Ft)t≥0, (Xt)t≥0

)
be a stochastic process with

values in a standard measurable space (Λ,E). This process possesses the strong Markov property if for any
finite stopping time τ for the filtration (Ft)t≥0 and for any t ≥ 0

E
(
f (Xt+τ)|Fτ

)
= E

(
f (Xt+τ)|Xτ

)
a.s.

for all bounded and measurable functions f : Λ→ R.

As before, this condition means that the conditional expectation depends only on Xτ, and not on the full history
encoded in Fτ. Also, observe that the above condition is equivalent to

E
(
1A(Xt+τ)|Fτ

)
= E

(
1A(Xt+τ)|Xτ

)
= p(τ, t + τ, Xτ, A) a.s.

for all A ∈ E, if X is associated to the Markov transition function p.

Exercise 6.2.2. Show that the standard 1-dimensional Brownian process has the strong Markov property, see
for example [2, Example 6.2] or [1, Thm. 8.6 & Example 8.7].

Let us now move to the Feller property. It corresponds to a regularity property of the Markov transition
function.

Definition 6.2.3 (Feller property, Feller process). A Markov transition function p on a standard measurable
space (Λ,E) possesses the Feller property if for any bounded and continuous function f : Λ → R and any
h > 0, the map

R+ × Λ ∋ (t, y) 7→
∫
Λ

f (z) p(t, t + h, y, dz)

is continuous. A Markov process associated to a Markov transition function p is a Feller process if p satisfies
the Feller property.
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Observe that if the Markov process is homogeneous, then the Feller condition reduces to the continuity of the
map

Λ ∋ y 7→
∫
Λ

f (z) p(h, y, dz)

with p the function introduced before (6.1.6). Let us also mention two rather technical results: Firstly, for any
right continuous Feller process, we can choose the right continuous filtration (Ft+)t≥0 introduced in (2.3.1).
The resulting stochastic process is still a Markov process associated with the same Markov transition function,
see [7, Thm. 2.1]. Thus, for right-continuous Feller process, there is no restriction for considering it endowed
with (Ft+)t≥0. Secondly, any right-continuous Feller process endowed with the filtration (Ft+)t≥0 possesses
the strong Markov property. A proof is provided in [7, Thm. 2.4] or in [2, Thm. 6.1].

Let us now assume consider the Markov transition function associated to a homogeneous Markov process,
with the notation introduced before (6.1.6). For the standard measurable space (Λ,E), let us denote by Mb(Λ)
the set of bounded and measurable functions f : Λ → R, and denote by Cb(Λ) the subset of continuous and
bounded functions. For any f ∈ Mb(Λ), any t ≥ 0, and any y ∈ Λ let us set

[Ut f ](y) :=
∫
Λ

f (z)p(t, y, dz).

With the notation of conditional probability, this also corresponds to E
(
f (Xt)|X0 = y

)
. The following properties

for the operator hold:

1. ∥Ut f ∥∞ ≤ ∥ f ∥∞, with ∥g∥∞ := supy∈Λ |g(y)| for any g ∈ Mb(Λ),

2. UsUt = Us+t for any s, t ≥ 0,

3. If p has the Feller property, Ut f belongs to Cb(Λ) whenever f ∈ Cb(Λ).

Let us mention that property 1. means that Ut is a contraction, property 2. means that the family (Ut)t≥0 is
a semi-group, while property 3. says that the operator Ul leaves Cb(Λ) invariant, if the Markov transition
function has the Feller property.

Exercise 6.2.4. Prove the above properties, using the Chapman-Kolmogorov equation for the second one.

In the above framework and whenever the Feller property holds, let us still define the infinitesimal generator
of the semi-group (Ut)t≥0, namely for f ∈ Cb(Λ) we set

A f := lim
t↘0

1
t
(
Ut f − f

)
(6.2.1)

with this limit taken in Cb(Λ). The set on which this limit exists is called the domain of A and is denoted by
D(A).

If the Markov process is not homogeneous, one can still define the family of operators (Us,t)t≥s≥0 by

[Us,t f ](y) :=
∫
Λ

f (z)p(s, t, y, dz) = E
(
f (Xt)|Xs = y

)
.

This family of operators satisfies Us,t = Us,uUu,t for any s ≤ u ≤ t. For the generator, there are two natural
definitions, leading to two different operators:

A+s f := lim
h↘0

1
h
(
Us,s+h f − f

)
(6.2.2)
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with this limit taken in Cb(Λ), and
A−s f := lim

h↘0
1
h
(
Us−h,s f − f

)
(6.2.3)

with this limit taken in Cb(Λ). Their natural domain are denoted byD(A+s ) andD(A−s ), respectively. We shall
come back to these operators in the next section.

6.3 SDE and PDE

In this section, we establish the link between stochastic differential equations (SDE) and partial differential
equations (PDE). This link is very successful and there exist many important results based on the intersection
of these two subjects. Here we only scratch the surface, and consider only processes with values in R. The
generalization to processes with values in RN is “straightforward” (which is always a lie /).

Let us come back to the framework of Definition 5.1.2 on time-inhomogeneous diffusion processes of the
form

dXt = σ(t, Xt)dBt + µ(t, Xt)dt, t ≥ 0.

with B the standard 1-dimensional Brownian process. Simultaneously, we define the second order differential
operator

Lt := 1
2σ

2(t, x)∂2
x + µ(t, x)∂x. (6.3.1)

With this notation, and for any continuous f : R2 → R, with ∂t f , ∂x f , and ∂2
x f also continuous, Itô’s lemma

for Itô processes takes the form

d f (t, Xt) =
{
[∂t f ](t, Xt) + [Lt f ](t, Xt)

}
dt + σ(t, Xt)[∂x f ](t, Xt)dBt

which is equivalent to∫ t

0
σ(u, Xu)[∂x f ](u, Xu)dBu = f (t, Xt) − f (0, X0) −

∫ t

0

[
∂t f + Lu f

]
(u, Xu)du.

As mentioned in Theorem 4.3.1, the l.h.s. defines a mean zero and continuous martingale if the map u 7→
σ(u, Xu)[∂x f ](u, Xu) belongs to M2([0,T ]

)
for some T > 0. Thus, under sufficient conditions on f , µ, and

σ, one can ensure that this condition holds. Note that this result is based on existence theorems similar to
Theorem 5.2.7, see [11, Thm .6.2 & 6.3]. Under such assumptions, and if f solves the backward equation

∂t f + Lt f = 0 (6.3.2)

then one infers that
(
f (t, Xt) − f (0, X0)

)
t∈[0,T ] is a mean zero and continuous martingale. However, even if

(6.3.2) does not hold, the following statement takes place. Note that we provide a set of sufficient conditions,
but other conditions are available in the specialized literature, see for example [11, Thm. 6.3].

Theorem 6.3.1 (Dynkin’s formula). Let f : [0,T ] × R, and assume that f , ∂t f , ∂x f , and ∂2
x f are continuous,

Assume also that σ, µ are Lipschitz8 and have sublinear growth. Then, the map u 7→ σ(u, Xu)[∂x f ](u, Xu)
belongs to M2([0,T ]

)
, with Xt defined by

dXt = σ(t, Xt)dBt + µ(t, Xt)dt, t ≥ 0,

8In this context, it means that |σ(t, x) − σ(t, y)| + |µ(t, x) − µ(t, y)| ≤ K|x − y| for all x, y ∈ R and for a constant K independent of
t ∈ [0,T ].
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and for any t ∈ [0,T ] one has

E
(
f (t, Xt)

)
= E

(
f (0, X0)

)
+ E

( ∫ t

0

[
∂t f + Lu f

]
(u, Xu)du

)
.

The same equality also holds if t is replaced by a bounded stopping time τ, if 0 ≤ τ ≤ T.

The simple proof of this statement is based on Theorem 4.3.1 and on the Optional Stopping Theorem 3.2.18.

Let us now establish more clearly a link between SDE and PDE. The next statement provides a method
for the computation of the expectation of a function of a stochastic process, namely the aim is to compute
E
(
g(XT )|Xt = y

)
for some bounded function g.

Theorem 6.3.2 (Backward equation with terminal value). Let X be solution for t > s ≥ 0 of

dXt = σ(t, Xt)dBt + µ(t, Xt)dt, Xs = y

for some y ∈ R and with σ, µ Lipschitz and with sublinear growth. Let f : [0,T ]×R with f , ∂t f , ∂x f , and ∂2
x f

continuous, and with ∂x f bounded. Assume also that f is a solution of the backward equation ∂t f + Lt f = 0
with Lt defined by (6.3.1), and also that f (T, y) = g(y) for some bounded function g. Then the equality

f (t, y) = E
(
g(XT )|Xt = y

)
=

∫
R

g(z)p(t,T, y, dz) = [Ut,T g](y) (6.3.3)

holds for any t ∈ [0,T ] and y ∈ R.

The proof of this statement can be studied as an exercise, see [11, Corol. 6.4 & Thm. 6.6]. Clearly, the equality
(6.3.3) makes a link between PDE and SDE, since the l.h.s. is a solution of a PDE, while the r.h.s. involves the
solution of a SDE. Note also that a converse statement also holds, under suitable conditions. Namely, if we
set f (t, y) := E

(
g(XT )|Xt = y

)
for g, σ, µ verifying certain regularity and growth properties, then f is a solution

of the backward equation (6.3.2) with boundary condition f (T, y) = limt↗T f (t, y) = g(y). Such a statement is
called Kolmogorov’s equation, see [7, Thm. 5.6.1] and also [11, Thm. 6.9].

In the previous statement, the terminal condition was provided by the system at time T , and this is apparently
the most useful version of the backward equation. Nevertheless, a similar statement also holds for an initial
condition at time 0. The following statement is borrowed from [1, Thm. 8.11]. Note that the setting is less
general and the conditions stronger.

Theorem 6.3.3 (Backward equation with initial value). Let X satisfy the time-homogeneous diffusion’s con-
dition

dXt = σ(Xt)dBt + µ(Xt)dt, t ≥ 0

with σ, µ differentiable with bounded derivative. Set L := 1
2σ

2(x)∂2
x + µ(x)∂x, and let g ∈ C2(R) be vanishing

outside of a bounded interval. Then the solution of the initial value problem

∂t f = L f , with f (0, y) = g(y)

satisfies the equality

f (t, y) = E
(
g(Xt)|X0 = y

)
=

∫
R

g(z)p(t, y, dz) = [Utg](y) (6.3.4)

for any t ≥ 0 and y ∈ R.

Exercise 6.3.4. Illustrate the previous result with the heat equation. In this case, L := 1
2∂

2
x, and one ends up

with the heat equation ∂t f = 1
2∂

2
x f , see Example [1, 8.10] and [11, Example 6.2].
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Let us now establish the link with the infinitesimal generator introduced at the end of Section 6.2, at least
formally. By relation (6.2.1) and by considering the derivative with respect to the variable t of the equation
(6.3.4), one gets

Ag = lim
t↘0

1
t
(
Utg − g

)
= ∂tUtg|t=0 = LUtg|t=0 = Lg,

meaning that L is the infinitesimal generator. Similarly, by (6.2.3) and by considering the derivative with
respect to the variable t of the equation (6.3.3), one gets

A−t f = lim
h↘0

1
h
(
Ut−h,t − 1

)
Ut,T g = lim

h↘0
1
h
(
Ut−h,T − Ut,T

)
g = −∂tUt,T g = LtUt,T g = Lt f ,

meaning that Lt is the infinitesimal generator A−t .

As an example of the previous observation, let us look at the infinitesimal generator of a few processes already
mentioned in these notes: The infinitesimal generator of the Ornstein-Uhlenbeck process can be deduced from
(5.1.4), namely L = 1

2α
2∂2

x − βx∂x, the infinitesimal generator of the geometric Brownian process can be be
inferred from (5.2.5), namely L = 1

2σ
2x2∂2

x + rx∂x. The infinitesimal generator of any linear SDE can also be
written based on (5.2.7).

Let us state one more relation between PDE and SDE, a simplified version of the celebrated Feynman-Kac
formula. It corresponds to an extension of the previous statement, when the backward equation contains an
additional term. The following statement is borrowed from [11, Thm. 6.8], but [2, Thm. 10.5 & Thm. 10.6]
contain more general statements.

Theorem 6.3.5 (Feynman-Kac formula with terminal value). Consider a Itô process satisfying the differential
stochastic equation dXt = σ(t, Xt) dBt + µ(t, Xt) dt and let r : [0,T ] × R → R and g : R → R be measurable
and bounded functions. Assume that f : [0,T ] × R→ R is a solution of the equation

[∂t f ](t, x) + [Lt f ](t, x) = r(t, x) f (t, x), f (T, y) = g(y).

Then, f is unique and satisfies the relation

f (t, y) = E
(

exp
(
−

∫ T

t
r
(
u, Xu

)
du

)
g(XT )

∣∣∣∣Xt = y
)
.

Exercise 6.3.6. Give a probabilistic representation of the solution of the equation

∂t f + 1
2σ

2x2∂2
x f + µx∂x f = r f , f (T, y) = y2

for r, σ, µ > 0, see also [11, Example 6.5].

Let us now have a quick look at the notion of forward equations. Its theory is slightly more demanding since
solutions are often considered in the weak sense only. First of all, we define the formal adjoint of an operator.
Namely, consider f , g smooth real functions on R vanishing outside of a bounded set, and let ⟨ f , g⟩ denotes
their (real) scalar product: ⟨ f , g⟩ =

∫
R

f (x) g(x) dx. Then the formal adjoint of an operator A is defined by the
relation

⟨ f , Ag⟩ = ⟨A∗ f , g⟩.

In particular if we consider the operator Lt defined in (6.3.1), then its formal adjoint acts on f as

L∗t f := 1
2∂

2
x
(
σ2(t, x) f

)
− ∂x

(
µ(t, x) f

)
. (6.3.5)
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Note that there already appears an ambiguity: In the theory developed so far, the function x 7→ σ(t, x) has not
been assumed to be two times differentiable, and the function x 7→ µ(t, x) has not been assumed to be once
differentiable. Thus, the derivatives in (6.3.5) have to be understood in a weak sense, which we do not develop
here.

Exercise 6.3.7. Compute the adjoint of the generators of the Brownian process, of the geometric Brownian
process, and of the Ornstein-Uhlenbeck process, see for example [1, Examples 8.19 to 8.21].

The adjoint operator can also be used for describing the evolution of diffusion process X. The forward equation
is also called Fokker-Planck equation, or Forward Kolmogorov equation. In the next statement we provide
two versions of forward equation, one for the induced probability measure, one for the Markov transition
function. For the former, we assume that the induced probability measure is induced by a probability density
function, while for the latter, we assume that there exists a density for the Markov transition function, namely
that p(s, t, y, A) =

∫
A p(s, t, y, x)dx. The following statement is borrowed from [9, Lecture 10], and we refer to

[1, Thm. 8.24] and to [12, Thm. 10.9.10] for the time-homogeneous version of these results.

Theorem 6.3.8 (Fokker-Planck equation). Assume the existence of the univariate stochastic process defined
by

dXt = σ(t, Xt)dBt + µ(t, Xt)dt, X0 = Y.

1. Let µt be the induced probability probability density function of Xt, with µ0 the induced probability
density function of Y. Then the map [0,T ] × R ∋ (t, x) 7→ µt(x) ∈ R solves the equation

∂tµt = L∗t µt.

2. Suppose that X is associated to a Markov transition function with a density denoted by p. Then the map
R+ × R+ × R × R ∋ (s, t, y, x) 7→ p(s, t, y, x) ∈ R+ satisfies the following equality in the weak sense:

∂t p = L∗t p, p(s, s, y, x) = δ0(x − y).

where L∗t acts on the x-variable of the function p.

As a final remark for this chapter, let us mention that the processes considered so far had no restriction in
the space variable, they took values in R or in RN . When spatial constraints are added, new phenomena
take place, and can be encoded in the PDE setting. Namely, various boundary conditions are possible, like
reflecting conditions, absorbing conditions, periodic boundary conditions, etc. Depending on these conditions,
the behavior of the stochastic processes can change drastically. For that reason, the correct choices of the
boundary conditions play a crucial role in applications. We leave this for your future...
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Chapter 7

Applications in finance

In this chapter, we present some applications of concepts introduced in the previous chapters in mathematical
finance. In fact, these applications have partially triggered the development of stochastic calculus, after the
seminal works of Black and Scholes (1973) and of Merton (1973). Let us emphasize that the content of this
chapter is based on models, which are often either too simple or not accurate enough. They can often be
thought as a first approximation of a more complicated reality. However, once in a model, the mathematical
developments should be as precise as possible.

7.1 Options

We firstly introduce a few definitions related to finance. The following definition is borrowed from [15, p. 3].

Definition 7.1.1 (Options). An option is a contract which gives the holder of the option the right, but not the
obligation to buy or to sell an asset at a given price K, sometimes called exercise price or strike price, either
at a fixed time T (called the maturity time or expiration time) or any time t within a fixed interval of time
[0,T ]. More precisely, a call option gives the holder of the option the right to buy at the given price, while
a put option gives the holder the right to sell at a given price. A European option is an option for which the
holder can exercise their right only at time T , while an American option is an option for which the holder can
exercise their right at any time t in [0,T ].

For example, a European call option is intended to guarantee its holder of being able to acquire the underlying
asset at a price that is not larger than K (and therefore being safe from the market fluctuations). If at maturity
the underlying asset has a price greater than K, then the holder of the option will exercise their right and obtain
the asset at the price K. Otherwise, the option will be dropped, and the asset can be bought on the market
(if available) at a price lower than K. More concretely, suppose that the price of the asset is represented by a
stochastic process S . At time T , if ST > K, then the holder of the European call option will probably exercise
their right, buy the asset at the price K and sell it at the price ST . The gain is then ST − K. On the other hand,
if ST ≤ K, then the option will expire as a worthless contract. Thus, the holder of a European call option will
be able to earn at time T the amount given by

(ST − K)+ := max{0, ST − K} =

ST − K if ST > K,
0 if ST ≤ K.

(7.1.1)

Observe that the same gain holds for an American call option, with the major difference that the time T has to
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be replaced by any time t ∈ [0,T ]. Clearly, it is then more difficult to decide when the holder will exercise its
right, since the opportunities where St > K can appear at various times.

For a European put option, a similar description holds: at time T if ST < K, then it is advantageous to exercise
the right to sell the asset at the price K and to buy it again at the market price ST , while if ST > K, it is better
not to exercise the option. Thus, the holder of the option can earn (K − ST )+ at time T . Similarly, the holder
of an American put option can earn (K − St)+ at time t ∈ [0,T ]. In these four situations, the amount of money
earned by the holder of an option is often referred to as the payoff.

Note that in Definition 7.1.1, only two types of options (European or American) are described, but other
options exist, often with more complicated rules. For examples, some options have a payoff which is “path-
dependent” (meaning that payoff depend on the whole price process S ), or whose payoff at time T is a more
complicated function of ST . We refer to [1, Sec. 10.7] or to [2, Example 13.3] for some examples. In addition
and as already suggested, American options are more difficult to tackle than European options, since the
payoff is time-dependent. Henceforth, we shall concentrate on the European option only, as it is done in
several introductory books.

For any European option, since the price ST is not known at time t = 0, the main question is how much would
anyone be willing to pay for this option ?, or alternatively, what is a rational price for this option at time
t = 0 ? These are the typical questions for the potential purchaser of an option. From the perspective of the
issuer, the question becomes how much should the issuer be paid in order to compensate the risk of having to
pay the payoff ? A related question is what could be the strategy of the issuer in order to protect himself from a
loss ? We shall try to answer these questions in the following sections, under a few simplifying assumptions:
1) There are no transaction costs for buying or selling assets, and no taxes, 2) It is possible to buy or sell an
arbitrary quantity of an asset, meaning that they can be multiplied by any real number and not only by integers
or specific fractions. In this context, a negative number corresponds to the sale of the asset. It is also possible
to sell assets which are not owned by the vendor (or equivalently to possess a negative amount of this asset).

7.2 Market model, trading strategies, arbitrage

In this section and in the following ones, we consider the standard N-dimensional Brownian process B =(
Ω,F ,P, {Ft}t∈[0,T ], {Bt}t∈[0,T ]

)
for some T > 0. In particular, it means that the filtration is right continuous

Ft = Ft+ :=
⋂
ε>0 Ft+ε and that F0 contains the negligible sets of Ω. With no loss of generality, we can also

choose F = FT . The components of the Brownian process are denoted by B1, . . . , BN .

Let us start by introducing the framework: A market model consists of n+1 stochastic processes S 0, S1, . . . , S n,
all taking values in R+ and defined by the stochastic differential equations:

dS i
t = Ai

t dt +
N∑

j=1

Gi j
t dB j

t , i ∈ {1, . . . , n} (7.2.1)

where Ai, Gi j are continuous and adapted to the filtration provided by the standard Brownian process. These
equations correspond to Itô processes, as introduced in Definition 5.1.1 for the special case N = 1. The
process S 0 satisfies the simpler stochastic equation

dS 0
t = rtS 0

t dt (7.2.2)

where the spot rate t 7→ rt ≥ 0 is progressively measurable (see Definition 2.3.3) and bounded. These n + 1
stochastic processes represent the prices of some assets. The process S 0 represents a risk-free asset, which is
going to play the role of a reference in the model, while the processes S 1, . . . , S n represent risky assets.
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Example 7.2.1 (Black-Scholes model). One of the simplest examples of a market model is given for N = 1
and n = 1 by the stochastic differential equation

dS 1
t = µS 1

t dt + σS 1
t dBt (7.2.3)

with µ ∈ R and σ > 0. The constant µ is called the mean rate of return and the constant σ the volatility.
On the other hand, the stochastic process for S 0 is still given by (7.2.2). Note that the function r can also be
deterministic, which is independent of the underlying probability space associated with the Brownian process.

The first equation corresponds to time-homogeneous diffusion processes, as introduced in Definition 5.1.2,
while the second equation is a time-inhomogeneous diffusion process. The solutions of these equations are
known: the first one has already been mentioned in Exercise 5.2.2 and reads

S 1
t = S 1

0 e(µ−σ2/2)t+σBt , (7.2.4)

with S 1
0 an initial condition independent of the Brownian process, while

S 0
t = S 0

0 exp
(∫ t

0
rs ds

)
. (7.2.5)

In the special case of a constant parameter r, then the solution is simply S 0
t = S 0

0 ert for t ∈ [0,T ].

For completeness, let us describe how the equation (7.2.3) can be heuristically introduced. We denote by “dt”
a very small interval of time, and assume that the relative return from the asset S 1 and between time t and
time t + dt is given by the relation

S 1
t+dt − S 1

t

S 1
t

= µdt + σdBt.

In this relation, the term µ dt can be interpreted as the linear trend while the term σ dBt corresponds to the
stochastic noise. Observe also that this relation can be rewritten as

S 1
t+dt − S 1

t = µS 1
t dt + σS 1

t dBt

which corresponds to a heuristic version of (7.2.3).

A trading strategy or a portfolio for our assets consists in a stochastic process H with values in Rn+1, namely
a map

H : [0,T ] ×Ω ∋ (t, ω) 7→ Ht(ω) ≡
(
H0

t (ω),H1
t (ω), . . . ,Hn

t (ω)
)
∈ Rn+1,

which is progressively measurable, see Definition 2.3.3, and such that the following technical conditions
H0 ∈ M1

loc([0,T ]) and Hi ∈ M2
loc([0,T ]) are satisfied for i ∈ {1, . . . , n}, see Definition 4.2.5. Note that these

regularity conditions ensure the following necessary properties

H0r ∈ M1
loc([0,T ]), HiAi ∈ M1

loc([0,T ]), HiGi j ∈ M2
loc([0,T ])

for any i ∈ {1, . . . , n} and j ∈ {1, . . . ,N}.

In the sequel, we shall interpret Hi
t as the number of risky asset S i

t possessed at time t, while H0
t will represent

the number of risk-free asset S 0
t possessed at time t. Thus, given the assets S i and S 0 defined by (7.2.1) and

(7.2.2), the value of the portfolio or simply the portfolio V(H) associated with the trading strategy H is given
for t ∈ [0,T ] by

Vt(H) = H0
t S 0

t +

n∑
i=1

Hi
t S i

t (7.2.6)
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and is a measure of wealth. Note that Hi
t can take negative values, meaning a sale of the corresponding asset.

A trading strategy is self-financing if the stochastic process V(H) ≡ {Vt(H)}t∈[0,T ] satisfies

Vt(H) = V0(H) +
n∑

i=0

∫ t

0
Hi

u dS i
u.

Equivalently, this relation reads dVt =
∑n

i=0 Hi
t dS i

t with initial condition V0(H), or more explicitly:

dVt(H) = H0
t rtS 0

t dt +
n∑

i=1

Hi
t A

i
t dt +

n∑
i=1

Hi
t

N∑
j=1

Gi j
t dB j

t ,

which is again a Itô process, see Definition 5.1.1 for the special case of N = 1. The meaning of this condition
is that the changes in the value of the portfolio are due to capital losses or gains and not to increase or decrease
of the invested funds. In other words, there are no external infusion of capital and no spending.

Let us now introduce some relative quantities. Indeed, the value of one unit of money changes over time
because of the risk-free asset: 1¥ at time 0 is worth e

∫ t
0 rs ds ¥ at time t, or ert ¥ in the simplest case of a constant

parameter r. This process is sometimes referred to as the discounting process. Then the discounted price
processes and the discounted portfolio associated with the trading strategy H are defined for t ∈ [0,T ] and
i ∈ {1, . . . , n} by

S̃ i
t :=

S i
t

S 0
t
= e−

∫ t
0 rs ds S i

t and Ṽt(H) :=
Vt(H)

S 0
t
= e−

∫ t
0 rs ds Vt(H).

In the simplest case of a constant parameter r these expressions takes the form

S̃ i
t := e−rt S i

t and Ṽt(H) := e−rt Vt(H).

Intuitively, S̃ i
t corresponds to the amount of money which has to be invested at time t = 0 in the risk-free asset

i in order to have the amount of S i
t at time t.

Let us provide a statement which links the notion of self-financing with the discounted portfolio. The proof
can be found in [2, Prop. 13.1] and looking at its proof is an instructive exercise.

Proposition 7.2.2. The trading strategy H is self-financing if and only if for any t ∈ [0,T ]

Ṽt(H) = V0(H) +
n∑

i=1

∫ t

0
Hi

u dS̃ i
u.

Among the family of all self-financing trading strategies, let us call admissible the ones satisfying Vt(H) ≥ 0
a.s. for all t ∈ [0,T ]. This condition means that the value of the portfolio remains non-negative at any time
and almost surely, or in other words that the investor is solvent at any time9. We now define a special class
of trading strategies. A self-financing trading strategy H over [0,T ] is said to be an arbitrage strategy or an
arbitrage opportunity if the associated portfolio satisfies the three conditions V0(H) = 0, Vt(H) ≥ 0 for any
t ∈ [0,T ], and P

(
VT (H) > 0

)
> 0. In other words, an arbitrage strategy does not require any initial capital,

is admissible, and produces a gain with a strictly positive probability. Clearly, an arbitrage strategy is very
seldom, and if it takes place, it is during a very short period of time.

9Some authors call admissible all strategies leading to Vt(H) ≥ −C for some C > 0, meaning that a certain debt can be tolerated.
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Remark 7.2.3. The condition Vt(H) ≥ 0 for all t ∈ [0,T ] is very strong, and some authors require only that
VT (H) ≥ 0, meaning that the investor might not be solvable at all time. In the framework of the Black-Scholes
model, examples of arbitrage strategy can be exhibited, as for example when r = 0, µ = 0 and σ = 1, see for
example [15, Example p. 60] or [10, Example p. 9]. In these examples, the portfolio VT (H) at time T can take
an arbitrary positive value, but this portfolio is not bounded from below for t ∈ (0,T ), which is not realistic.
In addition, the number of jumps for the functions H0 and H1 might be infinite. Additional conditions are then
imposed for avoiding these situations, like the condition Vt(H) ≥ 0 for all t ∈ [0,T ].

Exercise 7.2.4. Describe an example of an arbitrage strategy. Can you find any which really took place and
got famous ?

Since arbitrage strategies are very rare, one often assumes that they don’t exist. More precisely, a market model
is said to be arbitrage-free if any admissible trading strategy H with V0(H) = 0 is such that P

(
VT (H) > 0

)
= 0.

This condition will be rephrased below in terms of an equivalent measure.

7.3 Equivalent martingale measures

Given two probability measures P and Q on (Ω,F ), we say that Q is absolutely continuous with respect to P
if P(A) = 0 for A ∈ F implies Q(A) = 0. This relation is often denoted by P ≫ Q. The Radon-Nikodym
theorem states that if P ≫ Q then there exists a measurable function Π : Ω→ R+ such that

Q(A) =
∫

A
ΠdP =

∫
A
Π(ω)P(dω).

If both P ≫ Q and Q ≫ P, then the two measures are said to be equivalent. This notion means that the two
measures have the same negligible sets. Observe that it is the notion which has already been introduced in
Definition 1.1.10, when one of the two measures is the Lebesgue measure on RN .

In relation with the previous section, one notion of equivalent measure is important. Before introducing
it, recall that a process

(
Ω,F ,P, (Ft)t∈[0,T ], (Mt)t∈[0,T ]

)
is a martingale if E(Mt|Fs) = Ms for all s ≤ t, see

Definition 3.2.1. Let us emphasize that the conditional expectation E(Mt|Fs) has been defined in Section
3.1 and is based on the measure P. Clearly, a change of this measure would give a different conditional
expectation.

Definition 7.3.1 (Equivalent martingale measure). In the framework of the previous section, a probability
measure P∗ on (Ω,F ) is called an equivalent martingale measure if P∗ is equivalent to P and if the discounted
price processes S̃ 1, . . . , S̃ n are martingales with the filtration (Ft)t∈[0,T ] and under P∗. An equivalent martin-
gale measure is also called a risk-neutral probability.

It turns out that if there exists an equivalent martingale measure P∗ and if H is an admissible trading strat-
egy, then the discounted portfolio Ṽ(H) is a supermartingale with the filtration (Ft)t∈[0,T ] and under P∗, see
[2, Prop. 13.2]. However, it is often important to consider trading strategies leading to a discounted portfo-
lio which is a true martingale under P∗. Thus, whenever an equivalent martingale measure exists, we write
MT (P∗) for the set of admissible trading strategies leading to a discounted portfolio Ṽ(H) which is a martin-
gale with the filtration (Ft)t∈[0,T ] and under P∗.

Let us now state the notion of arbitrage-free in terms of equivalent measure, see [2, Prop. 13.3] for the proof.
It shows the importance of the notion of martingale equivalent measure. A more explicit statement can also
be found in [12, Thm. 11.2.2] in a slightly
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Proposition 7.3.2. If there exists an equivalent martingale measure P∗, then the market model is arbitrage-
free.

Let us mention that the converse statement also holds, namely the absence of arbitrage implies the existence
of an equivalent martingale measure (under suitable assumptions). This statement corresponds to the first
half of the fundamental theorem of asset pricing and plays a key role in mathematical finance, see also [11,
Thm. 11.6].

We illustrate the previous definition and proposition with the Black-Scholes model introduced in Example
7.2.1 for N = 1 and n = 1. Consider the stochastic processes exhibited in (7.2.4) and (7.2.5), and let us rewrite
the corresponding discounted price process:

S̃ 1
t = e−

∫ t
0 rs ds S 1

t = S 1
0 e(µ−σ2/2)t+σBt−

∫ t
0 rs ds = S 1

0 e−σ
2/2t+σ

(
Bt+

µ
σ t−

∫ t
0

rs
σ ds

)
.

Then, the new process B̃t := Bt +
µ
σ t −

∫ t
0

rs
σ ds can be seen as a Brownian process with a drift. It turns out that

there exists an explicit equivalent martingale measure on (Ω,F ) under which B̃ is distributed as a standard
Brownian process (which is a martingale). Such a result is called Girsanov’s theorem and its statement and
proof can be found in [1, Thm. 9.11], [2, Thm. 12.1], or [11, Thm. 10.16], see also [12, Sec. 8.9] for a thorough
presentation. Note that the idea of changing the underlying probability measure on (Ω,F ) and studying its
effect on random variables or on random processes is a well developed theory and can be found for example
in [1, Chap. 9], [11, Chap. 10].

7.4 Replicating strategies and market completeness

Let us now come back to the notion of European options introduced in Section 7.1. Any of them is attached
with the two quantities (Z,T ), namely the time of maturity T and the payoff Z, which is a FT -measurable and
non-negative random variable, see (7.1.1) for a European call option, and the similar formula for a European
put option. Once again, our aim is to find a suitable price for acquiring this option.

Assume that we have a market model and that an equivalent martingale measure P∗ exists. Let (Z,T ) be a
European option with Z ∈ L1(Ω,FT ,P

∗), see Definition 1.4.1. The option (Z,T ) is attainable if there exists
an admissible trading strategy H ∈ MT (P∗) such that VT (H) = Z. Such a strategy H is said to replicate the
option (Z,T ) in MT (P∗). Note that the condition Z ∈ L1(Ω,FT ,P

∗) is in fact necessary for an option to be
attainable (which means that we don’t have to require it a priori). In this context the following statement plays
an important role, see [2, Prop. 13.4].

Proposition 7.4.1. Assume that an equivalent martingale measure P∗ exists for a given market model, and
let (Z,T ) be an attainable European option. Then for any trading strategy H replicating Z in MT (P∗) the
corresponding portfolio is given by

Vt(H) = E∗
(
e−

∫ T
t rs dsZ |Ft

)
, (7.4.1)

where E∗ is the expectation computation with respect to P∗.

As one can expect from the l.h.s., this result is independent of any specific choice of an equivalent martingale
measure, if more than one exist. In the framework of the previous statement, let us stress that the amount of
money defined by Vt(H) is the right price for the European option at time t. Indeed, it can be shown that if
the price is either higher or lower than Vt(H), then there exists an arbitrage strategy, as introduced before. It
means that with a different price for the option at time t, there would be a strategy leading to a strictly positive
gain without any initial capital.

64

https://en.wikipedia.org/wiki/Fundamental_theorem_of_asset_pricing


Exercise 7.4.2. Explain how an arbitrage strategy can be established if the price of the option at time t is not
given by Vt(H), see for example [2, p. 405].

Since for any attainable European option one can fix a no-arbitrage price, it is natural to wonder if all European
options are attainable ? Recall that any good question is related to a definition ,. In the present situation:
A market model is complete if 1) there exists an equivalent martingale measure P∗, 2) for any equivalent
martingale measure P∗, any European options (Z,T ), with Z ∈ L1(Ω,FT ,P

∗), is attainable. Otherwise the
market model is said to be incomplete. In the complete case, one has:

Proposition 7.4.3. If the market model is complete, then an equivalent martingale measure is unique.

The previous statement, with a simple proof can be found in [2, Thm. 13.1]. A converse statement also holds
and corresponds to the second half of the fundamental theorem of asset pricing, see also [11, Thm. 11.15]. A
more elaborated approach can be found in [15, Sec. 5.3 & 5.5].

7.5 Generalized Black-Scholes models

Let us start by reducing the generality of the stochastic processes introduced in Section 7.2. For that purpose,
we assume that the stochastic differential equation (7.2.1) is of the form

dS i
t = S i

t bi(t, St)dt +
N∑

j=1

S i
tσi j(t, St)dB j

t , i ∈ {1, . . . , n} (7.5.1)

for St = (S 1
t , . . . , S

n
t ), the drift b : [0,T ] × Rn → Rn, and the volatility σ : [0,T ] × Rn → Mn×N(R). Observe

that factorizing S i
t in both terms of the r.h.s. is suggested by the expression presented in (7.2.3) for the Black-

Scholes model, see Example 7.2.1. It addition, we assume that the functions b and σ are bounded and locally
Lipschitz continuous, as introduced in the statement of Theorem 5.2.7. With these assumptions, there exists a
solution of (7.5.1) which belongs to M2([0,T ]

)
, see the mentioned theorem and [2, Thm. 9.1].

We shall now state a few results which are valid in this framework. For this, let us firstly recall that a matrix
a(t, x) ∈ Mn(R) is positive definite if ⟨a(t, x)ξ, ξ⟩ > 0 for every ξ ∈ Rn with ξ , 0. Note that we use the notation
⟨ζ, ξ⟩ for the scalar product between the two elements ζ, ξ ∈ Rn. We also say that matrix valued function a
is uniformly positive definite or uniformly elliptic if there exists λ > 0 such that ⟨a(t, x)ξ, ξ⟩ ≥ λ∥ξ∥2 for all
ξ ∈ Rn, ξ , 0, and all t and x.

Proposition 7.5.1. Assume that N ≥ n, that the matrix σ(t, x) in (7.5.1) is of rank n for any t and x, and
that the matrix valued function σσT is uniformly elliptic. Then there exists at least one equivalent martingale
measure P∗. If N = n, then this measure is unique, while if N > n it is not.

The previous statement can be found in [2, Prop. 13.6]. The next one, which is the main result for the
generalized Black-Scholes models, corresponds to [2, Thm. 13.3].

Theorem 7.5.2. If N = n and if the matrix valued function σσT is uniformly elliptic, then the generalized
Black-Scholes models defined in (7.5.1) is complete.

It is interesting to mention that if N < n, then an equivalent martingale measure might not exist, and arbitrages
might exist. Such an example is provided in [2, Exercise 13.5]. From now, we assume that n = N and that the
matrix valued function σσT is uniformly elliptic. By the completeness of the market model, any European
options (Z,T ), with Z ∈ L1(Ω,FT ,P

∗), is attainable, and the porfolio is given by (7.4.1). However, how can
we construct explicitly the corresponding trading strategy H ?
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For answering this question, let us impose two more technical assumptions: The function σ is Lipschitz
continuous in both variables, see footnote 8 or here, and the function t 7→ rt is driven by the risky asset,
namely rt = r(t, St). We also assume that this function is Lipschitz continuous. Observe that a deterministic
function (independent of any randomness) fits into this framework.

Let us also assume that the payoff of the European option is of the form h(ST ) for some function h : Rn → R+
satisfying h(x) ≤ C(1 + ∥x∥α) for some C, α > 0. By Doob-Dynkin lemma mentioned on page 23, it follows
that10

Vt(H) = E∗
(
e−

∫ T
t r(s,Ss)dsh(ST ) |Ft

)
= P(t, St)

where the function P belongs to C1,2([0,T ] × Rn) and satisfies the PDE∂tP(t, x) + [LtP](t, x) − r(t, x) P(t, x) = 0 for (t, x) ∈ [0,T ) × Rn,

P(T, x) = h(x),
(7.5.2)

with Lt the second order differential operator defined by

Lt := r(t, x)
n∑

i=1

xi∂xi +
1
2

n∑
i, j=1

(σσT )i jxi x j ∂xi∂x j .

The proof of the above statement can be found in [2, Thm. 13.4], and additional relations between SDE and
PDE were already introduced in Section 6.3. Note that the equation (7.5.2) is sometimes called the funda-
mental PDE following from the no-arbitrage approach. Based on the function P, it is possible to compute the
price of a European option with payoff h(ST ) by solving a PDE. Quite surprisingly, observe that the equation
(7.5.2) does not depend on the drift term appearing in (7.5.1), namely the term involving the function b.

Let us now state some relation between the function P and the trading strategy replicating the European option(
h(ST ),T

)
. These relations read Hi

t = [∂xi P](t, St) for i ∈ {1, . . . , n},

H0
t = e−

∫ t
0 r(s,Ss)ds

(
P(t, St) −

∑n
i=1 Hi

t S i
t

)
.

(7.5.3)

In the financial jargon, the quantities Hi
t are also called the deltas of the option, and one has

∆i(t, St) := [∂xi P](t, St)

for i ∈ {1, . . . , n}. Additional funny names are given to other partial derivatives of P, namely:

Γi j(t, St) := [∂xi∂x j P](t, St) gammas,

Θ(t, St) := [∂tP](t, St) theta,

ρ(t, St) := [∂rP](t, St) rho,

Vega(t, St) := [∂σP](t, St) vega.

Clearly, the last two expressions have to be better defined, if these variables are not constants. Altogether,
these expressions are called the Greek, for a quite obvious reason. And additional expressions apparently
exist, called vanna, charm, speed, vomma, veta, zomma, ultima, charm, vera, color, see [1, Sec. 10.5] and
here.

10The second equality holds because the uniform ellipticity of σσT implies the equality between the original filtration Ft and the
augmented natural filtration generated by St.
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7.6 The Black-Scholes model

In this final section, we further develop some the previous results in one of the simplest market model,
the Black-Scholes model already introduced in Example 7.2.1. For the presentation, we mainly follow [2,
Sec. 13.7] but another pedestrian approach can be found in [13, Chap. 4]. In this model, there is only one
risky asset, whose evolution is denoted by the stochastic process S , and which satisfies the stochastic differ-
ential equation

dSt = µSt dt + σSt dBt, (7.6.1)

where µ and the volatility σ are constant. The spot rate of the risk-free asset is also assumed to be constant. If
we consider the simple payoff introduced in (7.1.1), then one has

P(t, St) = E∗
(
e−r(T−t)(ST − K)+ |Ft

)
with K the strike price of a European call option with maturity time T . Note that the equivalent martingale
measure is explicit for this example, which means that the above expression can be explicitly computed, and
one gets

P(t, x) =
e−r(T−t)
√

2π

∫ ∞

−∞

(
xe(r−σ2/2)(T−t)+σ

√
T−tz − K

)+e−z2/2 dz.

Observe that the integrand vanishes if xe(r−σ2/2)(T−t)+σ
√

T−tz ≤ K, or equivalently if z ≤ d0(T − t, x) with

d0(t, x) :=
1

σ
√

t

(
− ln(x/K) −

(
r − σ2/2

)
t
)
.

As a consequence, one infers that

P(t, x) =
e−r(T−t)
√

2π

∫ ∞

d0(T−t,x)

(
xe(r−σ2/2)(T−t)+σ

√
T−tz − K

)
e−z2/2 dz.

If we introduce function Φ : R → [0, 1] by Φ(y) := 1√
2π

∫ y
−∞

e−z2/2 dz (the cumulative distribution function),
then one gets (after a few lines of computations)

P(t, x) = xΦ
(
− d0(T − t, x) + σ

√
T − t

)
− Ke−r(T−t)Φ

(
− d0(T − t, x)

)
.

Thus, if we set

d1(t, x) := −d0(t, x) + σ
√

t =
1

σ
√

t

(
ln(x/K) +

(
r + σ2/2

)
t
)

and

d2(t, x) = −d0(t, x) =
1

σ
√

t

(
ln(x/K) +

(
r − σ2/2

)
t
)

then one finally obtains

P(t, x) = xΦ
(
d1(T − t, x)

)
− Ke−r(T−t)Φ

(
d2(T − t, x)

)
.

For different values of x, K and σ, this function is represented in [2, p. 424].

The previous result is valid for the simple payoff introduced in (7.1.1). For completeness, let us state a more
general result which can be found in [1, Prop. 10.13].
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Proposition 7.6.1. For the Black-Scholes model and for a payoff given by h(x) ≤ C(1+ |x|α) for some C, α > 0.
Then, the function P is given by

P(t, x) =
e−r(T−t)
√

2π

∫ ∞

−∞

h
(
xe(r−σ2/2)(T−t)+σ

√
T−tz)e−z2/2 dz.

Based on the above expression for the simple payoff function, everything can be computed for the Black-
Scholes model. We list a few results, most of them can be obtained by straightforward computations. Note
that these expressions are computed for a European call option, similar computations also hold for a European
put option. We set ϕ := Φ′ and get (see also [2, p. 425–426]) :

H1
t = [∂xi P](t, St) = Φ

(
d1(T − t, St)

)
,

H0
t = e−rt

(
P(t, St) − Φ

(
d1(T − t, St)

))
,

and also

Γ(t, x) =
ϕ
(
d1(T − t, x)

)
xσ
√

T − t
,

Θ(t, x) = −
xϕ

(
d1(T − t, x)

)
σ

2
√

T − t
− r K e−r(T−t)ϕ

(
d2(T − t, x)

)
,

ρ(t, x) = K (T − t)e−r(T−t)Φ
(
d2(T − t, x)

)
,

Vega(t, x) = x
√

T − tϕ
(
d1(T − t, x)

)
.

Exercise 7.6.2. Check these expressions, based on the definitions given in the previous section.

Let us finally mention that an example of a path-dependent option is thoroughly presented in [2, Example
13.3] and various additional examples are available in [1, Chap. 10]. These examples can be understood with
the material introduced so far. For more advanced examples, and also for the study of American options, we
recommend [15, Chap. 4]. However, additional efforts are necessary for understanding these developments.
No such thing as a free lunch !
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Entry time, 27
Equivalent martingale measure, 63
Equivalent measures, 63
European option, 59
Event, 4
Event space, 4
Exercise price, 59
Exit time, 27
Expectation, 6
Expiration time, 59
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Feller process, 53
Feller property, 53
Feynman-Kac formula, 57
Filtration, 15
Finite variation, 19
First order differential equation, 45
Fokker-Planck equation, 58
Forward equation, 57
Forward Kolmogorov equation, 58
Fractional Brownian process, 15
Fundamental Theorem of asset pricing, 64

Gaussian process, 14
Gaussian random variable, 7
Gaussian vector, 7, 12
Generalized Black-Scholes model, 65
Geometric Brownian process, 27
Greek, 66

Hilbert space, 24
Hitting time, 27
Homogeneous Markov process, 51
Homogeneous Markov property, 50
Hurst index, 15

IID, 9
Increasing predictable process, 27
Independence, 9, 18
Independent σ-algebras, 17
Independent and identically distributed, 9
Indicator function, 7
Indistinguishable stochastic processes, 16
Induced probability measure, 5
Infinite variation, 19
Infinitesimal generator, 54
Integral process, 42
Integrand, 32
Integrator, 32
Isometry property, 35
Itô exponential, 40
Itô integral, 33
Itô lemma, 38
Itô process, 42
Itô stochastic differential equation, 46
Itô stochastic integral, 35

Jensen’s inequality, 23
Joint measure, 8

Joint moment generating function, 9
Jointly Gaussian, 12

Kolmogorov equation, 56
Kolmogorov’s continuity theorem, 18

Langevin equation, 44
Last passage time, 28
Law, 5
Linear stochastic differential equation, 47
Linear trend, 61
Lipschitz continuity, 66
Local drift, 43
Local martingale, 37
Local volatility, 43
Locally Lipschitz, 48
Lower semi-continuous, 23

Marginal measure, 8
Market model, 60
Markov process, 51
Markov process associated to a transition function, 51
Markov property, 50
Markov transition function, 51
Markov’s inequality, 7
Martingale, 26
Martingale property, 36
Martingale transform, 33
Maturity time, 59
Mean rate of return, 61
Mean square convergence, 11
Mean value, 6
Measurable function, 3
Measurable space, 3
Modification, 16
Moment generating function, 7
Moments, 7
Multivariate random variable, 5

Natural Brownian process, 18
Natural filtration, 16
Non-degenerate Gaussian vector, 13

Option, 59
Optional Stopping theorem, 29
Ornstein-Uhlenbeck process, 15, 44
Orthogonal projection, 10

Partition, 19
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Path, 14
Path-dependent option, 68
Payoff, 60
PDE, 55
PDF, 5
PMF, 5
Portfolio, 61
Positive definite, 65
Power set, 3
Pre-image, 4
Predictable, 33
Probability density function, 5
Probability distribution, 5
Probability mass function, 5
Probability measure, 4
Probability space, 4
Progressively integrable process, 34
Progressively measurable, 16
Put option, 59

Quadratic mean, 11
Quadratic variation, 37

Radon-Nikodym theorem, 63
Random differential equation, 46
Random variable, 4
Random vector, 5
Recurrent, 41
Relative return, 61
Replicate the option, 64
Replicating strategy, 64
Restricted measure, 22
Riemann integral, 31
Riemann sum, 31
Riemann-Stieltjes integral, 32
Right continuous, 17
Risk-free asset, 60
Risk-neutral probability, 63
Risky asset, 60

Sample space, 4
SDE, 55
Second order differential equation, 45
Self-financing, 62
Sigma algebra, 3
Spot rate, 60
Standard Brownian process, 27

Standard deviation, 7
Standard measurable space, 6
Standard stochastic process, 18
Stochastic differential, 42
Stochastic differential equation, 45
Stochastic exponential, 47
Stochastic integral of elementary process, 34
Stochastic logarithm, 47
Stochastic noise, 61
Stochastic process, 15
Stopped martingale, 28
Stopping theorem, 28
Stopping time, 27
Stratonovich calculus, 47
Strike price, 59
Strong Markov property, 53
Strong solution, 46
Sublinear growth, 55
Submartingale, 26
Supermartingale, 26

Time-homogeneous, 43
Time-inhomogeneous, 43
Trading strategy, 61
Trajectory, 14
Transient, 41

Uncorrelated random variables, 8
Uniformly elliptic, 65
Uniformly positive definite, 65
Univariate random variable, 5, 10

Variance, 7
Variation, 32
Vector valued random variable, 5
Volatility, 15, 61, 65

Weak solution, 48
Wiener integral, 37
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