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1 Introduction: a fair coin toss

Let’s imagine that two people A and B are playing a coin tossing game, where the probability

of the coin landing heads or tails is both 50%. A has a yen, and B has b yen (of course, both a and

b are positive integers). Each side bets 1 yen in each round. The game stops only when A or B loses

all their capital. So, what are the winning probabilities for A and B?

Taking A as an example, let’s assume that after several rounds of the game, A has n yen. Then,

in the next round, the capital in A’s hand will only become n− 1 or n+1 with a probability of 50%:

50%. Let P (i) denote the probability that the gambler wins when he has i yen at the beginning.

Clearly, P (0) = 0 and P (X) = 1 (the sum of their money is X yen) by definition. Then:

P (n) = 0.5 · P (n− 1) + 0.5 · P (n+ 1)

Let’s rearrange the equation:

P (n)− P (n− 1) = P (n+ 1)− P (n) (arithmetic progression)

For A’s outcome, it’s either losing all (0) or winning all of B’s a + b. If we solve the above

arithmetic progression, we get:

The probability of A losing all is: b
a+b

The probability of B losing all is: a
a+b

Let’s verify with the example where A has 100 yen and B has 20 yen. In this case, the probability

of A losing all is 20
120

= 16.66%.

I did an experiment with 1000 trials using python, and the result was precise.

When B has 100 yen, the probability of A losing all is 100
200

= 50%.

When B has 1000 yen, the probability of A losing all is 1000
1100

= 10
11

= 90.9%.

Similarly, I did another two experiments with these two cases, and the results were accurate:
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2 For an arbitrary probability p

Now we change the situation: A has some money, and he wants to achieve a target capital of

X yen through a series of games. In each single game, A has a probability q of losing money, and

the situation transits from P (n) to P (n − 1), and is a probability p of transitioning from P (n) to

P (n+1). Of course, p+ q = 1. Here, we specify that p is not equal to q (or equivalently, p ̸= 0.5) to

prevent the occurrence of a zero denominator in later calculations. And of course, this case has been

discussed in section 1.

We have

P (n) = q · P (n− 1) + p · P (n+ 1)

Solving the above formula gives:

P (n+ 1)− P (n) =
q

p
(P (n)− P (n− 1))

This indicates that

P (i+ 1)− P (i) =

(
q

p

)i

P (1), 0 < i < X,

which means (p ̸= q as we have specified)

P (i+ 1) = P (1) + P (1)
i∑

k=1

(
q

p

)k

= P (1)
i∑

k=0

(
q

p

)k

=

P (1)

(
1−

(
q
p

)i+1
)

1− q
p

;

Let’s remember the fact (by definition) that P (X) = 1, so

1 = P (X) =

P (1)

(
1−

(
q
p

)X
)

1− q
p

;

From this we gets the value of P (1),

P (1) =
1− q

p

1−
(

q
p

)X
;
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and the value of P (k) for an arbitrary k between 1 and X.

P (k) =
1−

(
q
p

)k

1−
(

q
p

)X

This formula looks elegant and beautiful, reflecting the beauty of mathematics.
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