Cantelli's inequality, an improved version of Chebyshev's inequality

Zhou Yifan, Shanghai Jiao Tong University

January 2024

1 Cantelli's inequality

Let X be a real random variable, $a>0$, and $V(X)=E\left((X-E(X))^{2}\right)$. Then

$$
P(|X-E(X)| \geq a) \leq \frac{2 V(X)}{V(X)+a^{2}}
$$

2 Proof

Let's start by considering the random variable $Y=X-E(X)+t$ for $t \geq 0$. We have

$$
X-E(X) \geq a \Longleftrightarrow X-E(X)+t \geq a+t
$$

and since $a+t \geq 0$, we have

$$
(X-E(X)+t)^{2} \geq(a+t)^{2}
$$

Thus we deduce

$$
P(X-E(X) \geq a) \leq P\left((X-E(X)+t)^{2} \geq(a+t)^{2}\right) \leq \frac{E\left((X-E(X)+t)^{2}\right)}{(a+t)^{2}}
$$

(here we have applied Markov's inequality).
Furthermore,

$$
E\left((X-E(X)+t)^{2}\right)=E\left((X-E(X))^{2}+2 t E(X-E(X))+t^{2}\right)=V(X)+t^{2}
$$

We have thus demonstrated that

$$
P(X-E(X) \geq a) \leq \frac{t^{2}+V(X)}{(a+t)^{2}}
$$

We seek the value of t for which the right-hand side of the preceding inequality is minimized. For
this, we set, for $t \geq 0$,

$$
f(t)=\frac{t^{2}+V(X)}{(a+t)^{2}}
$$

The function f is differentiable on $[0,+\infty)$, and on this interval,

$$
f^{\prime}(t)=\frac{2 t(a+t)^{2}-2(a+t)\left(t^{2}+V(X)\right)}{(a+t)^{4}}=\frac{2(a t-V(X))}{(a+t)^{3}}
$$

The function f reaches its minimum at $t=\frac{V(X)}{a}$, and at this point, it is equal to

$$
f\left(\frac{V(X)}{a}\right)=\frac{\frac{V(X)^{2}}{a^{2}}+V(X)}{\left(\frac{V(X)}{a}+a\right)^{2}}=\frac{\frac{V(X)}{a}\left(\frac{V(X)}{a}+a\right)}{\left(\frac{V(X)}{a}+a\right)^{2}}=\frac{V(X)}{V(X)+a^{2}}
$$

Based on this minimum value, we apply the preceding inequality to $T=-X$ (this has the same variance as X), and then we obtain

$$
P(-(X-E(X)) \geq a) \leq \frac{V(X)}{V(X)+a^{2}}
$$

Since $|X-E(X)| \geq a=((X-E(X)) \geq a) \cup(-(X-E(X)) \geq a)$, we now have

$$
P(|X-E(X)| \geq a) \leq \frac{2 V(X)}{V(X)+a^{2}}
$$

This inequality is better than Chebyshev's inequality if and only if

$$
\frac{2 V(X)}{V(X)+a^{2}} \leq \frac{V(X)}{a^{2}} \Longleftrightarrow V(X) \geq a^{2} \quad(\text { or } V(X)=0)
$$

