Exercise 1.1.2

Yam

SML

Claim

If \mathcal{F} is a collection of subsets of Ω with $\Omega \in \mathcal{F}$ and which is closed under complement and countable unions, then it is closed under countable intersections.

Proof

Our aim is to show that for a collection of subsets $\{A_j\}_{j\in\mathbb{N}}$ with $A_j \in \mathcal{F} \ \forall j$, we have $\bigcap_i A_j \in \mathcal{F}$.

Let us start by considering the following.

Closed Under Complement (1)

If \mathcal{F} is closed under complement, then for any $A_j \in \mathcal{F}$, we have $A_j^c \in \mathcal{F}$.

Countable Unions (2)

For a collection of subsets $\{A_j\}_{j\in N}$ with $A_j \in \mathcal{F} \ \forall j$, we have that $\bigcup_j A_j \in \mathcal{F}$.

Complement of Intersection (3) Do Morgon's First Law*: $(\bigcirc A)^c = [1]$

De Morgan's First Law^{*}: $(\bigcap_j A_j)^c = \bigcup_j A_j^c$.

The proof is then straightforward.

Proof. For all $A_j \in \mathcal{F}$, we have by (1) that $A_j^c \in \mathcal{F}$. Then by (2), we have that $\bigcup_j A_j^c \in \mathcal{F}$. By (3), we have that $(\bigcap_j A_j)^c = \bigcup_j A_j^c \in \mathcal{F}$. Finally, by (1), we have that $\bigcap_j A_j \in \mathcal{F}$.

* De Morgan's Law for Countable Intersections

In order to justify the usage of De Morgan's Law for a countable intersection, we can use the quantified statements that define union and intersection.

$$x \in \bigcup_{j} A_{j} \iff (\exists j \in \mathbb{N}) \quad x \in A_{j}$$
$$x \in \bigcap_{j} A_{j} \iff (\forall j \in \mathbb{N}) \quad x \in A_{j}$$

Then we take the negation of the second statement.

$$x \in \left(\bigcap_{j} A_{j}\right)^{c} \iff x \notin \bigcap_{j} A_{j}$$
$$\iff \neg \left((\forall j \in \mathbb{N}) \quad x \in A_{j}\right)$$
$$\iff (\exists j \in \mathbb{N}) \quad x \notin A_{j}$$
$$\iff (\exists j \in \mathbb{N}) \quad x \in A_{j}^{c}$$
$$\iff x \in \bigcup_{j} A_{j}^{c}$$

So we may conclude that:

$$\left(\bigcap_{j} A_{j}\right)^{c} = \bigcup_{j} A_{j}^{c}$$