Exercise 2.1.2. Check that if X_{1}, X_{2} are independent and standard Gaussian random variables, then $\left(X_{1}, X_{2}\right)^{T}$ is a Gaussian vector: Show that the random variable $a_{1} X_{1}+a_{2} X_{2}$ is a Gaussian random variable with mean 0 and variance $a_{1}^{2}+a_{2}^{2}$. Generalize your result for N independent and standard Gaussian random variables.

To prove $X=\left(X_{1}, X_{2}\right)^{\top}$ is a Gaussian vector, we show that for $a=\left(a_{1}, a_{2}\right)^{\top} \in \mathbb{R}^{2} \quad a \cdot X=a_{1} X_{1}+a_{2} X_{2}$ is a Gaussian random variable.

PDF of Standard Gaussian random variable X :

$$
\pi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right)
$$

MGF of standard Gaussian random variable X :

$$
\begin{aligned}
& t \rightarrow E\left(e^{t X}\right) \\
& E\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} \frac{e^{-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} d x=\int_{-\infty}^{\infty} \frac{e^{t x-\frac{1}{2} x^{2}}}{\sqrt{2 \pi}} d x=\int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}\left(x^{2}-2 t x+t^{2}-t^{2}\right)}}{\sqrt{2 \pi}} d x=\int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}(x-t)^{2}} \cdot e^{\frac{t^{2}}{2}}}{\sqrt{2 \pi}} d x=
\end{aligned}
$$

$e^{\frac{t^{2}}{2}} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}(x-t)^{2}}}{\sqrt{2 \pi}} d x \quad$ Because $\frac{e^{-\frac{1}{2}(x-t)^{2}}}{\sqrt{2 \pi}}$ is PDF of Gaussian random variable with mean t,

$$
\int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}(x-t)^{2}}}{\sqrt{2 \pi}} d x=1 . \quad E\left(e^{t x}\right)=e^{\frac{t^{2}}{2}} \int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}(x-t)^{2}}}{\sqrt{2 \pi}} d x=e^{\frac{t^{2}}{2}} \cdot 1=e^{\frac{t^{2}}{2}}
$$

Define a Gaussian variable Y with mean μ, and variance b^{2}
$Y=\mu+6 X$ where X is a standard Gaussian random variable and $\mu \in \mathbb{R} \quad 6>0$ Using the previous result, the $M G F$ of Y :
$t \rightarrow E\left(e^{t Y}\right)=E\left(e^{t(\mu+\sigma x)}\right)=E\left(e^{t \mu} e^{G t x}\right)=e^{t \mu} E\left(e^{G x}\right)=e^{t \mu} \cdot e^{\frac{6 t^{2}}{2}}=e^{t \mu+\frac{1}{2} b^{2} t^{2}}$ Since MGF uniquely determines probability distribution of random variable We can ser MGF with the form $t \rightarrow e^{t \mu+\frac{1}{2} b^{2} t^{2}}$ is of a Gaussian distribution with mean μ and variance 6^{2}.
MGF of standard Gaussian variable $X_{1}: \quad t \rightarrow E\left(e^{t X_{1}}\right)=e^{\frac{t^{2}}{2}}$
MGF of standard Gaussian variable $X_{2}: \quad t \rightarrow E\left(e^{t x_{2}}\right)=e^{\frac{t^{2}}{2}}$

$t \rightarrow e^{\frac{a_{1}^{2}+a_{2}^{2}}{2} t^{2}}$ defines the MGF of Gaussian random variable with mean 0 and variance $\frac{a_{1}^{2}+a_{1}^{2}}{2}$

Generalization:
Let X_{1}, \ldots, X_{N} be independent and standard Gaussian random variables and $a=\left(a_{1}, a_{2}, \ldots, a_{N}\right)^{\top} \in \mathbb{R}^{N}$
MGF of $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{N} x_{N}: t \rightarrow E\left(e^{t\left(a_{1} x_{1} t \ldots+a_{N} x_{N}\right)}\right)=E\left(e^{a_{1} t x_{1}} e^{a_{1} t x_{2}} \ldots e^{a_{N} t x_{N}}\right)=E\left(e^{a_{1} t x_{1}}\right) E\left(e^{a_{2} t x_{2}}\right) \ldots E\left(e^{a_{N} t x_{N}}\right)=$ $e^{\frac{1}{2}\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{N}^{2}\right) t^{2}}$. Thus $t \rightarrow e^{\frac{1}{2}\left(a_{1}+\ldots+a_{N}^{2}\right) t^{2}}$ defines the MGF of Gaussian random variable with mean 0 and variance $\frac{a_{1}^{2}+a_{2}^{2}+\ldots+a_{N}^{2}}{2}$

