Exercise 2.1.2

Thursday, 9 November 2023 17:11

Exercise 2.1.2. Check that if X_1, X_2 are independent and standard Gaussian random variables, then $(X_1, X_2)^T$ is a Gaussian vector. Show that the random variable $a_1X_1 + a_2X_2$ is a Gaussian random variable with mean 0 and variance $a_1^2 + a_2^2$. Generalize your result for N independent and standard Gaussian random variables.

To prove $X = (X_1, X_2)^T$ is a Gaussian vector, we show that for $a = (a_1, a_2)^T \in \mathbb{R}^2$ $a \cdot X = a_1 X_1 + a_2 X_2$ is a Gaussian random variable.

PDF of Standard Gaussian random variable X $\Pi(n) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}x^{1}\right)$ M6F of standard Gaussian random variable X: $t \longrightarrow E(e^{tX})$ $E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} \frac{e^{\frac{1}{2}x^{1}}}{\sqrt{2\pi}} dx = \int_{-\infty}^{\infty} \frac{e^{tx} + 5^{2}}{\sqrt{2\pi}} dx = \int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}(n-1)^{2}}}{(1\pi)} dx = \int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}(n-1)^{2}}}{\sqrt{2\pi}} dx =$ $e^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}(n-1)^{2}}}{\sqrt{2\pi}} dx = because \frac{e^{\frac{1}{2}(n-1)^{2}}}{\sqrt{2\pi}} is PDF of Gaussian random variable with mean t,$ $\int_{-\infty}^{\infty} \frac{e^{-\frac{1}{2}(n-1)^{2}}}{\sqrt{2\pi}} dx = 1.$ $E(e^{tX}) = e^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{e^{\frac{1}{2}(n-1)^{2}}}{\sqrt{2\pi}} dx = e^{\frac{1}{2}} \cdot 1 = e^{\frac{1}{2}}$

Define a Gaussian variable Y with mean μ , and variance δ^{\pm} $Y = \mu + \delta X$ where X is a simulard Gaussian random variable and $\mu \in \mathbb{R}$ $\delta > 0$ Using the previous retail, the MOF of Y: $t \rightarrow E(e^{\xi Y}) = E(e^{\xi \mu + \alpha N}) = E(e^{\xi \mu} e^{\xi \lambda Y}) = e^{\xi \mu} E(e^{\alpha X}) = e^{\xi \mu} + \frac{1}{2}e^{\xi \mu} = e^{\xi \mu + \frac{1}{2}e^{\xi \mu}}$ Since MOF uniquely determines probability distribution of random variable we can see MOF with the form $t \rightarrow e^{\xi \mu + \frac{1}{2}e^{\xi \mu}}$; of a Gaussian distribution with mean μ and variance δ^{\pm} . MOF of standard Gaussian variable $X_{\pm}: t \rightarrow E(e^{\xi X_{\pm}}) = e^{\frac{1}{2}\frac{\xi}{2}}$ MOF of standard Gaussian variable $X_{\pm}: t \rightarrow E(e^{\xi X_{\pm}}) = e^{\frac{1}{2}\frac{\xi}{2}}$ MOF of an $X_{\pm} + a_{\pm}X_{\pm}: t \rightarrow E(e^{\xi (a_{\pm}X_{\pm} - a_{\pm}X_{\pm})}) = E(e^{a_{\pm}X_{\pm}}) = e^{a_{\pm}\xi a_{\pm}X_{\pm}}$ $t \rightarrow e^{\frac{1}{2}\frac{a_{\pm}Y_{\pm}}{2}e^{\frac{1}{2}}} defines the MOF of Gaussian random variable with mean 0 and variance <math>\frac{a_{\pm}a_{\pm}x_{\pm}}{2}$ $E(e^{a_{\pm}X_{\pm}}, X_{\pm}) = E(e^{\xi (a_{\pm}X_{\pm} - a_{\pm}X_{\pm})}) = E(e^{a_{\pm}X_{\pm}}, e^{a_{\pm}X_{\pm}}) = E(e^{a_{\pm}X_{\pm}}) = e^{\frac{1}{2}\frac{a_{\pm}x_{\pm}}{2}} e^{\frac{1}{2}\frac{a_{\pm}x_{\pm}$