Exercise 1.1.6.

1) $A^{C} \cup A=\Omega$ and $A^{C} \cap A=\varnothing$

$$
P(\Omega)=P\left(A^{c} \cup A\right)=P\left(A^{c}\right)+P(A) \quad P\left(A^{c}\right)=P(\Omega)-P(A)=1-P(A)
$$

2)

$$
\begin{aligned}
& A \cup B=A-A \cap B+A \cap B+B-A \cap B \\
& (A-A \cap B) \cap(A \cap B)=\varnothing \\
& (A-A \cap B) \cap(B-A \cap B)=\varnothing \quad P(A \cup B)=P(A-A \cap B)+P(A \cap B)+P(B-A \cap B)(*) \\
& (B-A \cap B) \cap(A \cap B)=\varnothing \\
& P(A)=P((A-A \cap B) \cup(A \cap B))=P(A-A \cap B)+P(A \cap B) \quad P(A-A \cap B)=P(A)-P(A \cap B) \text { (*) } \\
& P(B)=P((B-A \cap B) \cup(A \cap B))=P(B-A \cap B)+P(A \cap B) \quad P(B-A \cap B)=P(B)-P(A \cap B) \quad * *)
\end{aligned}
$$

Substituting $(* *)$ and $(* * *)$ into (*)

$$
P(A \cup B)=P(A)-P(A \cap B)+P(A \cap B)+P(B)-P(A \cap B)=P(A)+P(B)-P(A \cap B)
$$

3)

$$
\begin{aligned}
& B=A \cup(B \backslash A) \quad A \cap(B \backslash A)=\varnothing \\
& P(B)=P(A \cup(B \backslash A))=P(A)+P(B \backslash A) \\
& P(B)-P(A)=P(B \backslash A) \quad \text { we mow } P(B \backslash A) \geq 0
\end{aligned}
$$

Therefore, $P(B)-P(A) \geqslant 0 \Rightarrow P(B) \geqslant P(A)$

