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Exercise 5.1.7. Consider the Ito process satisfying
dXt = *6Xt dt+OédBt, X() =T (1)

for a € R and B > 0. This equation is called the Langevin equation. Note that this equation can be
written equivalently

t
Xt:.ﬁo—f—OéBt—ﬁ/ XSdS.
0

Show that the solution of this equation reads

t
X, = zoe Pt + a/ e Plt-w 4B, .
0

Consider a deterministic differential equation as follows:

' (t) + Ba(t) = f(1),
for some constant 3 and function f. We solve it by multiplying both sides by e?* and get
ePla (t) + pePla(t) = f(t)ePt
% [eﬂtx] (t) = f(t)eP!
& fla(t) = /f(t)eﬁt dt+C

=

& z(t)=e P Uf(t)eﬁt dt + C} .

Taking inspiration from this, we try an ansatz X, = e #*Z, for some It6 process (Zt)tejo,r) such
that Zy = x¢. Since we have

d[e ?] =0dB, — Be P dt,
dZt == ‘/tdBt-f—Dtdt,



Lemma 5.1.9! dictates that
X, =d[e""Z,] = Z,d[e P'] + e P1dZ, +0- Vi dt
= —Be Pz, dt + e Pt dZ,
= —BX,dt +ePtdz,.

Comparing this with (1), we obtain Z;:
t
e P'dZy =adB, & dZ;=aé’'dB, & Zi=Zp+ a/ e’ dB,.
0

As a result, we obtain a solution of (1) by using the initial condition Zy = zo:
t
X, =e 7, = zoe Pt + a/ e Plt-mgp,.
0

The process (X;)icjo,7] satisfying (1) is also called the Ornstein-Uhlenbeck process.

Now, we want to find the expectation value E(X;) and the autocovariance Cov(X;, X) of this
process. Observe that

=T 28T _ 4

= — < 0.
u=0 26

T 2Bu
/ 2P qu = e’
0 283

Since the process (e”*) belongs to M?2([0,T]), we obtain the expectation value of X; by using

w€e[0,T]
Proposition 4.2.10,

t
E(X;)=E (mgefﬁt) +ae PR </ e dBu> = zoe Pt 4+ 0 = zge L.
0

Now, before finding the autocovariance Cov(X;, X;), we prove that increments of a martingale
(My)iepo,r) are uncorrelated [2, Exercise 5.4]. Consider any times t;,ts,%3,%4 such that ¢; < ¢y <
ts < t4. Then, we have by using the martingale property,

E(Mt4 - Mts | Tt?) = E(Mt4 | ﬁz) - E(MtS | 7:752) = Mt2 - Mtz =0.

Since ¥z, C Fz, and My, is F;,-measurable, M;, is also 7;,-measurable. As a result M;, — M,, is
Fi,-measurable and we have

E [(MtQ - Mtl)(Mt4 - Mts)] = E{]E [(MtQ - Mtl)(Mt4 - Mt%) | ﬁ2”

=E[(My, — My, )E (M, — My, | F1,)] (Proposition 3.1.3, 4.)
=E [(Mt2 - Mt1) . 0] = O

Note that (Mt)te[o,T] defined by M; = fot Y, dB, is a martingale for any adapted stochastic process
(Y3)tepo, 7] belonging to M?([0,T]) (Theorem 4.3.1). Then, using Proposition 4.2.10 and the

LAll the statement in bold are from the lecture notes [1].



above property of martingales, we have for any s < ¢,

(e (f vean)] =2 | ([ veam) Jea[ ([ vam) ([ vean)]

- /OSIE(YuZ) du +E [(M; — M) (M — Mo)]

Now, coming back to the Ornstein-Uhlenbeck process (X¢)¢c[o,7], we have for any s <,

Cov(X¢, Xs) = E[(X¢ — E(X3))(Xs — E(X5))

) o o)
s [( [ ovan) ([ ovan)

_ (2e—Blt+s) / 228 4y,
0

)62B8 -1
26
o? —B(t—s) —28s
= ﬁe (1 —e ) .

_ a2e—6(t+s

Furthermore, ( fot e dB ) 0.1 is a Gaussian process by Theorem 4.3.4. We know that if X is
te

a Gaussian random variable, then aX +b is also a Gaussian random varlable for any a, b with a # 0.
So (Xt)iejo,r) is also a Gaussian process since X; = xge Pt + ae™F f ePvdB, for any t € [0, 7).

If a =0 =1and 2y =0, then we get E(X;) =0 and Cov(Xy, X;) = 56_(’5_3) (1 —e” s) for s < t,
which is the Gaussian process given in Example 2.2.6.

Digression: Langevin equation in physics

Originally, the Langevin equation was proposed as the equation of motion for a small particle in
Brownian motion (see [3, Chapter 7]). Consider a particle of mass m undergoing Brownian motion
in a fluid. The particle is assumed to be larger and heavier than the constituents of the fluid. In
addition, the particle is subjected to a damping force proportional to the particle’s velocity with
the coefficient «y, and a random force £(t) due to the thermal agitation of molecules composing the
fluid. The equation of motion according to Newton’s 2" law is

do(t)

" = e + €, @

m

which we write in one dimension for simplicity. The random force £(t) is also called white noise,
which is assumed to be a Gaussian process with stationary (invariant under time shifts) and Markov



properties. £(t) also has the following averaged properties

€@y =0, (£(BEE)) =go(t —1), (3)

where ¢ is the delta Dirac function and g is the measure of the noise’s strength. In the notation of
this course, the equations (2) and (3) can be rewritten as

mdVy = —AVidt + Z¢ dt, (4)

E(Z¢) =0, E(Z:Ey) = gd(t —t'), (5)

where we replace v and ¢ with their capital counterparts. Comparing (4) with (1), we get 8 = v/m
for the first term and formally for the second term,
, dB;

=" ma—-

dt -

=«

Since we know that the Brownian motion (B;) is nowhere differentiable, this expression of Z; is
not well-defined. However, the version (4) of the Langevin equation is widely used in physics.
Therefore, a heuristic explanation (see [4]) can be made to justify the usage of Z; (or £(¢)) and its
properties (5). From the definition of the Brownian motion, we have for any ¢, dt > 0,

B _ B 2.2
(Biyst — By) ~ N(0,6t) = Ei':= ma% ~N (0, m(;;y) .

It is clear that E (E?t) = 0 for any ¢, ¢ > 0. Since the Brownian motion By is also a martingale, we

can use the property that the increments are uncorrelated to compute the autocovariance ]E(E?tEf,t ).

Fix the value of t. For any ¢’ such that ' + 0t <t or ¢t + 0t < ¢/, we have
E [(Btyst — By)(Byst —By)) =0 = E(EftEg’t) =0.
Now, consider ¢’ such that ¢’ <t <t + §t. Then, we have t’ <t <t + 6t <t -+ 6t and

]E [(BtJr(St - Bt)(Bt’+5t - Bt/)] = E [(Bt+5t - Bt’+5t + Bt/+5t - Bt)(Bt/+5t - Bt + Bt - Bt’)]
=K [(Bt+5t - Bt/+5t)(Bt/+5t - Bt)] + E [(Bt'+(5t - Bt)2}
+ E [(Bi+st — Beryst)(Br — By)| + E[(By4st — Be) (Bt — By))]
=04+ {t'+5t—t)+0+0
=0t —(t—t),

where we use the fact that (Byjs: — Bt) ~ N(0,t' + §t — t). For the case t < t' < t+ dt, since we
also have t <t/ <t+ dt <t 4 dt, we can use the above result and interchange ¢ and ¢':

]E [(Bt+5t - Bt)(Bt’+5t — Bt/)] == 5t + (t - tl)
As a result, we get the autocovariance depending only on (¢ — t'),

E(:5t:~5t) _ mZQQW, |t — t/| < 5t,
T 0 t—t| > 6t
) | | > dt.



In addition, we have

t+4dt t t+4dt
/ (5t—\t—t’|)dt’=/ (6t —t+t')ar +/ (t+t—1t)dt
t t—0t t

—ot
2t6t — 6t? 2 2
= <5t2 — 6t + wt ot ) + <6t2 + t6t — wt;&)

= §t2.

Therefore, we get
oo 5t2
/ E(E2) dt’ = m?a®— = m?a?.
— 00
As 0t approaches 0, the region, where E(Z¢'=%) has nonzero values, shrinks while E(Z'=%) =

m2a? /5t — oo fort = t'. Meanwhile, the integral ofIE(”‘”:f,t) with respect to ¢ or ¢’ on R remains

a constant. Hence, ]E("‘”:f,t) formally converges to m2a?5(t — t') as dt goes to 0. Comparing with

(5), we get the equality a® = g/m?. Consequently, we can define formally

dB,

— B 6 _B “ »
B = lim 2" = /g lim et = \/ﬁﬁ,

5t—0 5t—0 ot

and get all the properties required. In hindsight, we can rewrite (4) in a more rigorous form:
mdV, = —yVidt + \/gdB;. (6)

Even though (4) is mostly used in physics, it is a mnemonic for (6), which is more mathematically
precise.
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