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Exercise 5.1.7. Consider the Itô process satisfying

dXt = −βXt dt + α dBt , X0 = x0 (1)

for α ∈ R and β > 0. This equation is called the Langevin equation. Note that this equation can be
written equivalently

Xt = x0 + αBt − β

∫ t

0
Xs ds .

Show that the solution of this equation reads

Xt = x0e−βt + α

∫ t

0
e−β(t−u) dBu .

Consider a deterministic differential equation as follows:

x′(t) + βx(t) = f(t),

for some constant β and function f . We solve it by multiplying both sides by eβt and get

eβtx′(t) + βeβtx(t) = f(t)eβt

⇔ d
dt

[
eβtx

]
(t) = f(t)eβt

⇔ eβtx(t) =
∫

f(t)eβt dt + C

⇔ x(t) = e−βt

[∫
f(t)eβt dt + C

]
.

Taking inspiration from this, we try an ansatz Xt = e−βtZt for some Itô process (Zt)t∈[0,T ] such
that Z0 = x0. Since we have

d
[
e−βt

]
= 0 dBt − βe−βt dt ,

dZt = Vt dBt + Dt dt ,
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Lemma 5.1.91 dictates that

dXt = d
[
e−βtZt

]
= Ztd

[
e−βt

]
+ e−βt dZt + 0 · Vt dt

= −βe−βtZt dt + e−βt dZt

= −βXt dt + e−βt dZt .

Comparing this with (1), we obtain Zt:

e−βt dZt = α dBt ⇔ dZt = αeβt dBt ⇔ Zt = Z0 + α

∫ t

0
eβu dBu .

As a result, we obtain a solution of (1) by using the initial condition Z0 = x0:

Xt = e−βtZt = x0e−βt + α

∫ t

0
e−β(t−u) dBu .

The process (Xt)t∈[0,T ] satisfying (1) is also called the Ornstein-Uhlenbeck process.

Now, we want to find the expectation value E(Xt) and the autocovariance Cov(Xt, Xs) of this
process. Observe that ∫ T

0
e2βu du = e2βu

2β

∣∣∣∣u=T

u=0
= e2βT − 1

2β
< ∞.

Since the process
(
eβu

)
u∈[0,T ] belongs to M2([0, T ]), we obtain the expectation value of Xt by using

Proposition 4.2.10,

E(Xt) = E
(
x0e−βt

)
+ αe−βtE

(∫ t

0
eβu dBu

)
= x0e−βt + 0 = x0e−βt.

Now, before finding the autocovariance Cov(Xt, Xs), we prove that increments of a martingale
(Mt)t∈[0,T ] are uncorrelated [2, Exercise 5.4]. Consider any times t1, t2, t3, t4 such that t1 ≤ t2 ≤
t3 ≤ t4. Then, we have by using the martingale property,

E(Mt4 − Mt3 | Ft2) = E(Mt4 | Ft2) − E(Mt3 | Ft2) = Mt2 − Mt2 = 0.

Since Ft1 ⊂ Ft2 and Mt1 is Ft1-measurable, Mt1 is also Ft2 -measurable. As a result Mt2 − Mt1 is
Ft2-measurable and we have

E [(Mt2 − Mt1)(Mt4 − Mt3)] = E {E [(Mt2 − Mt1)(Mt4 − Mt3) | Ft2 ]}
= E [(Mt2 − Mt1)E (Mt4 − Mt3 | Ft2)] (Proposition 3.1.3, 4.)
= E [(Mt2 − Mt1) · 0] = 0.

Note that (Mt)t∈[0,T ] defined by Mt =
∫ t

0 Yu dBu is a martingale for any adapted stochastic process
(Yt)t∈[0,T ] belonging to M2([0, T ]) (Theorem 4.3.1). Then, using Proposition 4.2.10 and the

1All the statement in bold are from the lecture notes [1].
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above property of martingales, we have for any s ≤ t,

E
[(∫ t

0
Yu dBu

) (∫ s

0
Yu dBu

)]
= E

[(∫ s

0
Yu dBu

)2
]

+ E
[(∫ t

s

Yu dBu

) (∫ s

0
Yu dBu

)]
=

∫ s

0
E(Y 2

u ) du + E [(Mt − Ms)(Ms − M0)]

=
∫ s

0
E(Y 2

u ) du .

Now, coming back to the Ornstein-Uhlenbeck process (Xt)t∈[0,T ], we have for any s ≤ t,

Cov(Xt, Xs) = E [(Xt − E(Xt))(Xs − E(Xs))]

= E
[(

α

∫ t

0
e−β(t−u) dBu

) (
α

∫ s

0
e−β(s−u) dBu

)]
= α2e−β(t+s)E

[(∫ t

0
eβu dBu

) (∫ s

0
eβu dBu

)]
= α2e−β(t+s)

∫ s

0
e2βu du

= α2e−β(t+s) e2βs − 1
2β

= α2

2β
e−β(t−s) (

1 − e−2βs
)

.

Furthermore,
(∫ t

0 eβu dBu

)
t∈[0,T ]

is a Gaussian process by Theorem 4.3.4. We know that if X is
a Gaussian random variable, then aX +b is also a Gaussian random variable for any a, b with a ̸= 0.
So (Xt)t∈[0,T ] is also a Gaussian process since Xt = x0e−βt + αe−βt

∫ t

0 eβu dBu for any t ∈ [0, T ].

If α = β = 1 and x0 = 0, then we get E(Xt) = 0 and Cov(Xt, Xs) = 1
2 e−(t−s) (

1 − e−2s
)

for s ≤ t,
which is the Gaussian process given in Example 2.2.6.

Digression: Langevin equation in physics
Originally, the Langevin equation was proposed as the equation of motion for a small particle in
Brownian motion (see [3, Chapter 7]). Consider a particle of mass m undergoing Brownian motion
in a fluid. The particle is assumed to be larger and heavier than the constituents of the fluid. In
addition, the particle is subjected to a damping force proportional to the particle’s velocity with
the coefficient γ, and a random force ξ(t) due to the thermal agitation of molecules composing the
fluid. The equation of motion according to Newton’s 2nd law is

m
dv(t)

dt
= −γv(t) + ξ(t), (2)

which we write in one dimension for simplicity. The random force ξ(t) is also called white noise,
which is assumed to be a Gaussian process with stationary (invariant under time shifts) and Markov
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properties. ξ(t) also has the following averaged properties

⟨ξ(t)⟩ = 0, ⟨ξ(t)ξ(t′)⟩ = gδ(t − t′), (3)

where δ is the delta Dirac function and g is the measure of the noise’s strength. In the notation of
this course, the equations (2) and (3) can be rewritten as

m dVt = −γVt dt + Ξt dt , (4)

E(Ξt) = 0, E(ΞtΞt′) = gδ(t − t′), (5)

where we replace v and ξ with their capital counterparts. Comparing (4) with (1), we get β = γ/m
for the first term and formally for the second term,

Ξt “ = ” mα
dBt

dt
.

Since we know that the Brownian motion (Bt) is nowhere differentiable, this expression of Ξt is
not well-defined. However, the version (4) of the Langevin equation is widely used in physics.
Therefore, a heuristic explanation (see [4]) can be made to justify the usage of Ξt (or ξ(t)) and its
properties (5). From the definition of the Brownian motion, we have for any t, δt > 0,

(Bt+δt − Bt) ∼ N(0, δt) ⇒ Ξδt
t := mα

Bt+δt − Bt

δt
∼ N

(
0,

m2α2

δt

)
.

It is clear that E
(
Ξδt

t

)
= 0 for any t, δt > 0. Since the Brownian motion Bt is also a martingale, we

can use the property that the increments are uncorrelated to compute the autocovariance E(Ξδt
t Ξδt

t′ ).
Fix the value of t. For any t′ such that t′ + δt < t or t + δt < t′, we have

E [(Bt+δt − Bt)(Bt′+δt − Bt′)] = 0 ⇒ E(Ξδt
t Ξδt

t′ ) = 0.

Now, consider t′ such that t′ ≤ t ≤ t′ + δt. Then, we have t′ ≤ t ≤ t′ + δt ≤ t + δt and

E [(Bt+δt − Bt)(Bt′+δt − Bt′)] = E [(Bt+δt − Bt′+δt + Bt′+δt − Bt)(Bt′+δt − Bt + Bt − Bt′)]
= E [(Bt+δt − Bt′+δt)(Bt′+δt − Bt)] + E

[
(Bt′+δt − Bt)2]

+ E [(Bt+δt − Bt′+δt)(Bt − Bt′)] + E [(Bt′+δt − Bt)(Bt − Bt′)]
= 0 + (t′ + δt − t) + 0 + 0
= δt − (t − t′),

where we use the fact that (Bt′+δt − Bt) ∼ N(0, t′ + δt − t). For the case t ≤ t′ ≤ t + δt, since we
also have t ≤ t′ ≤ t + δt ≤ t′ + δt, we can use the above result and interchange t and t′:

E [(Bt+δt − Bt)(Bt′+δt − Bt′)] = δt + (t − t′).

As a result, we get the autocovariance depending only on (t − t′),

E(Ξδt
t Ξδt

t′ ) =
{

m2α2 δt−|t−t′|
δt2 , |t − t′| ≤ δt,

0, |t − t′| > δt.
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In addition, we have∫ t+δt

t−δt

(δt − |t − t′|) dt′ =
∫ t

t−δt

(δt − t + t′) dt′ +
∫ t+δt

t

(δt + t − t′) dt′

=
(

δt2 − tδt + 2tδt − δt2

2

)
+

(
δt2 + tδt − 2tδt + δt2

2

)
= δt2.

Therefore, we get ∫ ∞

−∞
E(Ξδt

t Ξδt
t′ ) dt′ = m2α2 δt2

δt2 = m2α2.

As δt approaches 0, the region, where E(Ξδt
t Ξδt

t′ ) has nonzero values, shrinks while E(Ξδt
t Ξδt

t′ ) =
m2α2/δt → ∞ for t = t′. Meanwhile, the integral of E(Ξδt

t Ξδt
t′ ) with respect to t or t′ on R remains

a constant. Hence, E(Ξδt
t Ξδt

t′ ) formally converges to m2α2δ(t − t′) as δt goes to 0. Comparing with
(5), we get the equality α2 = g/m2. Consequently, we can define formally

Ξt := lim
δt→0

Ξδt
t = √

g lim
δt→0

Bt+δt − Bt

δt
“ = ” √

g
dBt

dt
,

and get all the properties required. In hindsight, we can rewrite (4) in a more rigorous form:

m dVt = −γVt dt + √
g dBt . (6)

Even though (4) is mostly used in physics, it is a mnemonic for (6), which is more mathematically
precise.
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