Langevin equation

NGUYEN Tue Tai (ID 062201848)

January 16, 2024

Exercise 5.1.7. Consider the Itô process satisfying

$$
\begin{equation*}
\mathrm{d} X_{t}=-\beta X_{t} \mathrm{~d} t+\alpha \mathrm{d} B_{t}, \quad X_{0}=x_{0} \tag{1}
\end{equation*}
$$

for $\alpha \in \mathbb{R}$ and $\beta>0$. This equation is called the Langevin equation. Note that this equation can be written equivalently

$$
X_{t}=x_{0}+\alpha B_{t}-\beta \int_{0}^{t} X_{s} \mathrm{~d} s
$$

Show that the solution of this equation reads

$$
X_{t}=x_{0} e^{-\beta t}+\alpha \int_{0}^{t} e^{-\beta(t-u)} \mathrm{d} B_{u}
$$

Consider a deterministic differential equation as follows:

$$
x^{\prime}(t)+\beta x(t)=f(t)
$$

for some constant β and function f. We solve it by multiplying both sides by $e^{\beta t}$ and get

$$
\begin{array}{ll}
& e^{\beta t} x^{\prime}(t)+\beta e^{\beta t} x(t)=f(t) e^{\beta t} \\
\Leftrightarrow & \frac{\mathrm{~d}}{\mathrm{~d} t}\left[e^{\beta t} x\right](t)=f(t) e^{\beta t} \\
\Leftrightarrow & e^{\beta t} x(t)=\int f(t) e^{\beta t} \mathrm{~d} t+C \\
\Leftrightarrow & x(t)=e^{-\beta t}\left[\int f(t) e^{\beta t} \mathrm{~d} t+C\right] .
\end{array}
$$

Taking inspiration from this, we try an ansatz $X_{t}=e^{-\beta t} Z_{t}$ for some Itô process $\left(Z_{t}\right)_{t \in[0, T]}$ such that $Z_{0}=x_{0}$. Since we have

$$
\begin{aligned}
\mathrm{d}\left[e^{-\beta t}\right] & =0 \mathrm{~d} B_{t}-\beta e^{-\beta t} \mathrm{~d} t \\
\mathrm{~d} Z_{t} & =V_{t} \mathrm{~d} B_{t}+D_{t} \mathrm{~d} t
\end{aligned}
$$

Lemma 5.1.9 ${ }^{1}$ dictates that

$$
\begin{aligned}
\mathrm{d} X_{t}=\mathrm{d}\left[e^{-\beta t} Z_{t}\right] & =Z_{t} \mathrm{~d}\left[e^{-\beta t}\right]+e^{-\beta t} \mathrm{~d} Z_{t}+0 \cdot V_{t} \mathrm{~d} t \\
& =-\beta e^{-\beta t} Z_{t} \mathrm{~d} t+e^{-\beta t} \mathrm{~d} Z_{t} \\
& =-\beta X_{t} \mathrm{~d} t+e^{-\beta t} \mathrm{~d} Z_{t}
\end{aligned}
$$

Comparing this with (1), we obtain Z_{t} :

$$
e^{-\beta t} \mathrm{~d} Z_{t}=\alpha \mathrm{d} B_{t} \quad \Leftrightarrow \quad \mathrm{~d} Z_{t}=\alpha e^{\beta t} \mathrm{~d} B_{t} \quad \Leftrightarrow \quad Z_{t}=Z_{0}+\alpha \int_{0}^{t} e^{\beta u} \mathrm{~d} B_{u}
$$

As a result, we obtain a solution of (1) by using the initial condition $Z_{0}=x_{0}$:

$$
X_{t}=e^{-\beta t} Z_{t}=x_{0} e^{-\beta t}+\alpha \int_{0}^{t} e^{-\beta(t-u)} \mathrm{d} B_{u}
$$

The process $\left(X_{t}\right)_{t \in[0, T]}$ satisfying (1) is also called the Ornstein-Uhlenbeck process.
Now, we want to find the expectation value $\mathbb{E}\left(X_{t}\right)$ and the autocovariance $\operatorname{Cov}\left(X_{t}, X_{s}\right)$ of this process. Observe that

$$
\int_{0}^{T} e^{2 \beta u} \mathrm{~d} u=\left.\frac{e^{2 \beta u}}{2 \beta}\right|_{u=0} ^{u=T}=\frac{e^{2 \beta T}-1}{2 \beta}<\infty
$$

Since the process $\left(e^{\beta u}\right)_{u \in[0, T]}$ belongs to $M^{2}([0, T])$, we obtain the expectation value of X_{t} by using Proposition 4.2.10,

$$
\mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(x_{0} e^{-\beta t}\right)+\alpha e^{-\beta t} \mathbb{E}\left(\int_{0}^{t} e^{\beta u} \mathrm{~d} B_{u}\right)=x_{0} e^{-\beta t}+0=x_{0} e^{-\beta t}
$$

Now, before finding the autocovariance $\operatorname{Cov}\left(X_{t}, X_{s}\right)$, we prove that increments of a martingale $\left(M_{t}\right)_{t \in[0, T]}$ are uncorrelated [2, Exercise 5.4]. Consider any times $t_{1}, t_{2}, t_{3}, t_{4}$ such that $t_{1} \leq t_{2} \leq$ $t_{3} \leq t_{4}$. Then, we have by using the martingale property,

$$
\mathbb{E}\left(M_{t_{4}}-M_{t_{3}} \mid \mathcal{F}_{t_{2}}\right)=\mathbb{E}\left(M_{t_{4}} \mid \mathcal{F}_{t_{2}}\right)-\mathbb{E}\left(M_{t_{3}} \mid \mathcal{F}_{t_{2}}\right)=M_{t_{2}}-M_{t_{2}}=\mathbf{0}
$$

Since $\mathcal{F}_{t_{1}} \subset \mathcal{F}_{t_{2}}$ and $M_{t_{1}}$ is $\mathcal{F}_{t_{1}-\text { measurable, } M_{t_{1}} \text { is also } \mathcal{F}_{t_{2}} \text {-measurable. As a result } M_{t_{2}}-M_{t_{1}} \text { is }{ }^{\text {in }} \text {. }}$ $\mathcal{F}_{t_{2}}$-measurable and we have

$$
\begin{align*}
\mathbb{E}\left[\left(M_{t_{2}}-M_{t_{1}}\right)\left(M_{t_{4}}-M_{t_{3}}\right)\right] & =\mathbb{E}\left\{\mathbb{E}\left[\left(M_{t_{2}}-M_{t_{1}}\right)\left(M_{t_{4}}-M_{t_{3}}\right) \mid \mathcal{F}_{t_{2}}\right]\right\} \\
& =\mathbb{E}\left[\left(M_{t_{2}}-M_{t_{1}}\right) \mathbb{E}\left(M_{t_{4}}-M_{t_{3}} \mid \mathcal{F}_{t_{2}}\right)\right] \tag{Proposition3.1.3,4.}\\
& =\mathbb{E}\left[\left(M_{t_{2}}-M_{t_{1}}\right) \cdot \mathbf{0}\right]=0 .
\end{align*}
$$

Note that $\left(M_{t}\right)_{t \in[0, T]}$ defined by $M_{t}=\int_{0}^{t} Y_{u} \mathrm{~d} B_{u}$ is a martingale for any adapted stochastic process $\left(Y_{t}\right)_{t \in[0, T]}$ belonging to $M^{2}([0, T])$ (Theorem 4.3.1). Then, using Proposition 4.2 .10 and the

[^0]above property of martingales, we have for any $s \leq t$,
\[

$$
\begin{aligned}
\mathbb{E}\left[\left(\int_{0}^{t} Y_{u} \mathrm{~d} B_{u}\right)\left(\int_{0}^{s} Y_{u} \mathrm{~d} B_{u}\right)\right] & =\mathbb{E}\left[\left(\int_{0}^{s} Y_{u} \mathrm{~d} B_{u}\right)^{2}\right]+\mathbb{E}\left[\left(\int_{s}^{t} Y_{u} \mathrm{~d} B_{u}\right)\left(\int_{0}^{s} Y_{u} \mathrm{~d} B_{u}\right)\right] \\
& =\int_{0}^{s} \mathbb{E}\left(Y_{u}^{2}\right) \mathrm{d} u+\mathbb{E}\left[\left(M_{t}-M_{s}\right)\left(M_{s}-M_{0}\right)\right] \\
& =\int_{0}^{s} \mathbb{E}\left(Y_{u}^{2}\right) \mathrm{d} u
\end{aligned}
$$
\]

Now, coming back to the Ornstein-Uhlenbeck process $\left(X_{t}\right)_{t \in[0, T]}$, we have for any $s \leq t$,

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t}, X_{s}\right) & =\mathbb{E}\left[\left(X_{t}-\mathbb{E}\left(X_{t}\right)\right)\left(X_{s}-\mathbb{E}\left(X_{s}\right)\right)\right] \\
& =\mathbb{E}\left[\left(\alpha \int_{0}^{t} e^{-\beta(t-u)} \mathrm{d} B_{u}\right)\left(\alpha \int_{0}^{s} e^{-\beta(s-u)} \mathrm{d} B_{u}\right)\right] \\
& =\alpha^{2} e^{-\beta(t+s)} \mathbb{E}\left[\left(\int_{0}^{t} e^{\beta u} \mathrm{~d} B_{u}\right)\left(\int_{0}^{s} e^{\beta u} \mathrm{~d} B_{u}\right)\right] \\
& =\alpha^{2} e^{-\beta(t+s)} \int_{0}^{s} e^{2 \beta u} \mathrm{~d} u \\
& =\alpha^{2} e^{-\beta(t+s)} \frac{e^{2 \beta s}-1}{2 \beta} \\
& =\frac{\alpha^{2}}{2 \beta} e^{-\beta(t-s)}\left(1-e^{-2 \beta s}\right)
\end{aligned}
$$

Furthermore, $\left(\int_{0}^{t} e^{\beta u} \mathrm{~d} B_{u}\right)_{t \in[0, T]}$ is a Gaussian process by Theorem 4.3.4. We know that if X is a Gaussian random variable, then $a X+b$ is also a Gaussian random variable for any a, b with $a \neq 0$. So $\left(X_{t}\right)_{t \in[0, T]}$ is also a Gaussian process since $X_{t}=x_{0} e^{-\beta t}+\alpha e^{-\beta t} \int_{0}^{t} e^{\beta u} \mathrm{~d} B_{u}$ for any $t \in[0, T]$.
If $\alpha=\beta=1$ and $x_{0}=0$, then we get $\mathbb{E}\left(X_{t}\right)=0$ and $\operatorname{Cov}\left(X_{t}, X_{s}\right)=\frac{1}{2} e^{-(t-s)}\left(1-e^{-2 s}\right)$ for $s \leq t$, which is the Gaussian process given in Example 2.2.6.

Digression: Langevin equation in physics

Originally, the Langevin equation was proposed as the equation of motion for a small particle in Brownian motion (see [3, Chapter 7]). Consider a particle of mass m undergoing Brownian motion in a fluid. The particle is assumed to be larger and heavier than the constituents of the fluid. In addition, the particle is subjected to a damping force proportional to the particle's velocity with the coefficient γ, and a random force $\xi(t)$ due to the thermal agitation of molecules composing the fluid. The equation of motion according to Newton's $2^{\text {nd }}$ law is

$$
\begin{equation*}
m \frac{\mathrm{~d} v(t)}{\mathrm{d} t}=-\gamma v(t)+\xi(t) \tag{2}
\end{equation*}
$$

which we write in one dimension for simplicity. The random force $\xi(t)$ is also called white noise, which is assumed to be a Gaussian process with stationary (invariant under time shifts) and Markov
properties. $\xi(t)$ also has the following averaged properties

$$
\begin{equation*}
\langle\xi(t)\rangle=0, \quad\left\langle\xi(t) \xi\left(t^{\prime}\right)\right\rangle=g \delta\left(t-t^{\prime}\right) \tag{3}
\end{equation*}
$$

where δ is the delta Dirac function and g is the measure of the noise's strength. In the notation of this course, the equations (2) and (3) can be rewritten as

$$
\begin{gather*}
m \mathrm{~d} V_{t}=-\gamma V_{t} \mathrm{~d} t+\Xi_{t} \mathrm{~d} t \tag{4}\\
\mathbb{E}\left(\Xi_{t}\right)=0, \quad \mathbb{E}\left(\Xi_{t} \Xi_{t^{\prime}}\right)=g \delta\left(t-t^{\prime}\right), \tag{5}
\end{gather*}
$$

where we replace v and ξ with their capital counterparts. Comparing (4) with (1), we get $\beta=\gamma / m$ for the first term and formally for the second term,

$$
\Xi_{t} "=" m \alpha \frac{\mathrm{~d} B_{t}}{\mathrm{~d} t}
$$

Since we know that the Brownian motion $\left(B_{t}\right)$ is nowhere differentiable, this expression of Ξ_{t} is not well-defined. However, the version (4) of the Langevin equation is widely used in physics. Therefore, a heuristic explanation (see [4]) can be made to justify the usage of Ξ_{t} (or $\xi(t)$) and its properties (5). From the definition of the Brownian motion, we have for any $t, \delta t>0$,

$$
\left(B_{t+\delta t}-B_{t}\right) \sim N(0, \delta t) \quad \Rightarrow \quad \Xi_{t}^{\delta t}:=m \alpha \frac{B_{t+\delta t}-B_{t}}{\delta t} \sim N\left(0, \frac{m^{2} \alpha^{2}}{\delta t}\right)
$$

It is clear that $\mathbb{E}\left(\Xi_{t}^{\delta t}\right)=0$ for any $t, \delta t>0$. Since the Brownian motion B_{t} is also a martingale, we can use the property that the increments are uncorrelated to compute the autocovariance $\mathbb{E}\left(\Xi_{t}^{\delta t} \Xi_{t^{\prime}}^{\delta t}\right)$. Fix the value of t. For any t^{\prime} such that $t^{\prime}+\delta t<t$ or $t+\delta t<t^{\prime}$, we have

$$
\mathbb{E}\left[\left(B_{t+\delta t}-B_{t}\right)\left(B_{t^{\prime}+\delta t}-B_{t^{\prime}}\right)\right]=0 \quad \Rightarrow \quad \mathbb{E}\left(\Xi_{t}^{\delta t} \Xi_{t^{\prime}}^{\delta t}\right)=0
$$

Now, consider t^{\prime} such that $t^{\prime} \leq t \leq t^{\prime}+\delta t$. Then, we have $t^{\prime} \leq t \leq t^{\prime}+\delta t \leq t+\delta t$ and

$$
\begin{aligned}
\mathbb{E}\left[\left(B_{t+\delta t}-B_{t}\right)\left(B_{t^{\prime}+\delta t}-B_{t^{\prime}}\right)\right]= & \mathbb{E}\left[\left(B_{t+\delta t}-B_{t^{\prime}+\delta t}+B_{t^{\prime}+\delta t}-B_{t}\right)\left(B_{t^{\prime}+\delta t}-B_{t}+B_{t}-B_{t^{\prime}}\right)\right] \\
= & \mathbb{E}\left[\left(B_{t+\delta t}-B_{t^{\prime}+\delta t}\right)\left(B_{t^{\prime}+\delta t}-B_{t}\right)\right]+\mathbb{E}\left[\left(B_{t^{\prime}+\delta t}-B_{t}\right)^{2}\right] \\
& +\mathbb{E}\left[\left(B_{t+\delta t}-B_{t^{\prime}+\delta t}\right)\left(B_{t}-B_{t^{\prime}}\right)\right]+\mathbb{E}\left[\left(B_{t^{\prime}+\delta t}-B_{t}\right)\left(B_{t}-B_{t^{\prime}}\right)\right] \\
= & 0+\left(t^{\prime}+\delta t-t\right)+0+0 \\
= & \delta t-\left(t-t^{\prime}\right),
\end{aligned}
$$

where we use the fact that $\left(B_{t^{\prime}+\delta t}-B_{t}\right) \sim N\left(0, t^{\prime}+\delta t-t\right)$. For the case $t \leq t^{\prime} \leq t+\delta t$, since we also have $t \leq t^{\prime} \leq t+\delta t \leq t^{\prime}+\delta t$, we can use the above result and interchange t and t^{\prime} :

$$
\mathbb{E}\left[\left(B_{t+\delta t}-B_{t}\right)\left(B_{t^{\prime}+\delta t}-B_{t^{\prime}}\right)\right]=\delta t+\left(t-t^{\prime}\right)
$$

As a result, we get the autocovariance depending only on $\left(t-t^{\prime}\right)$,

$$
\mathbb{E}\left(\Xi_{t}^{\delta t} \Xi_{t^{\prime}}^{\delta t}\right)= \begin{cases}m^{2} \alpha^{2} \frac{\delta t-\left|t-t^{\prime}\right|}{\delta t^{2}}, & \left|t-t^{\prime}\right| \leq \delta t \\ 0, & \left|t-t^{\prime}\right|>\delta t\end{cases}
$$

In addition, we have

$$
\begin{aligned}
\int_{t-\delta t}^{t+\delta t}\left(\delta t-\left|t-t^{\prime}\right|\right) \mathrm{d} t^{\prime} & =\int_{t-\delta t}^{t}\left(\delta t-t+t^{\prime}\right) \mathrm{d} t^{\prime}+\int_{t}^{t+\delta t}\left(\delta t+t-t^{\prime}\right) \mathrm{d} t^{\prime} \\
& =\left(\delta t^{2}-t \delta t+\frac{2 t \delta t-\delta t^{2}}{2}\right)+\left(\delta t^{2}+t \delta t-\frac{2 t \delta t+\delta t^{2}}{2}\right) \\
& =\delta t^{2}
\end{aligned}
$$

Therefore, we get

$$
\int_{-\infty}^{\infty} \mathbb{E}\left(\Xi_{t}^{\delta t} \Xi_{t^{\prime}}^{\delta t}\right) \mathrm{d} t^{\prime}=m^{2} \alpha^{2} \frac{\delta t^{2}}{\delta t^{2}}=m^{2} \alpha^{2}
$$

As δt approaches 0 , the region, where $\mathbb{E}\left(\Xi_{t}^{\delta t} \Xi_{t^{\prime}}^{\delta t}\right)$ has nonzero values, shrinks while $\mathbb{E}\left(\Xi_{t}^{\delta t} \Xi_{t^{\prime}}^{\delta t}\right)=$ $m^{2} \alpha^{2} / \delta t \rightarrow \infty \quad$ for $t=t^{\prime}$. Meanwhile, the integral of $\mathbb{E}\left(\Xi_{t}^{\delta t} \Xi_{t^{\prime}}^{\delta t}\right)$ with respect to t or t^{\prime} on \mathbb{R} remains a constant. Hence, $\mathbb{E}\left(\Xi_{t}^{\delta t} \Xi_{t^{\prime}}^{\delta t}\right)$ formally converges to $m^{2} \alpha^{2} \delta\left(t-t^{\prime}\right)$ as δt goes to 0 . Comparing with (5), we get the equality $\alpha^{2}=g / m^{2}$. Consequently, we can define formally

$$
\Xi_{t}:=\lim _{\delta t \rightarrow 0} \Xi_{t}^{\delta t}=\sqrt{g} \lim _{\delta t \rightarrow 0} \frac{B_{t+\delta t}-B_{t}}{\delta t} \quad "=" \sqrt{g} \frac{\mathrm{~d} B_{t}}{\mathrm{~d} t}
$$

and get all the properties required. In hindsight, we can rewrite (4) in a more rigorous form:

$$
\begin{equation*}
m \mathrm{~d} V_{t}=-\gamma V_{t} \mathrm{~d} t+\sqrt{g} \mathrm{~d} B_{t} \tag{6}
\end{equation*}
$$

Even though (4) is mostly used in physics, it is a mnemonic for (6), which is more mathematically precise.

References

[1] Serge Richard, Lecture Notes: Introduction to Stochastic Calculus (Fall 2023)
[2] J.-L. Arguin, A first course in stochastic calculus
[3] L. E. Reichl, A modern course in statistical physics
[4] Gillespie, Daniel T. "The Mathematics of Brownian Motion and Johnson Noise." American Journal of Physics 64, no. 3 (March 1, 1996): 225-40. https://doi.org/10.1119/1.18210.

[^0]: ${ }^{1}$ All the statement in bold are from the lecture notes [1].

