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Exercise 3.1.5. In the framework of the previous proposition and for univariate random variables,
show that the map X 7→ E(X | G) is a bounded linear map from Lp(Ω,F ,P) to Lp(Ω,G,P) with
a norm smaller than or equal to 1, for any p ≥ 1. More explicitly, show the linearity and that
E

[
|E(X | G)|p

]
≤ E(|X|p). In the proof, use Jensen’s inequality for the function x 7→ |x|p.

For any X1, X2 ∈ Lp(Ω,F ,P) and α, β ∈ R, we have by the definition of conditional expectations,
for any D ∈ G,∫

D

E(αX1 + βX2 | G) dP =
∫

D

(αX1 + βX2) dP

= α

∫
D

X1 dP+ β

∫
D

X2 dP

= α

∫
D

E
(
X1 | G

)
dP+ β

∫
D

E
(
X2 | G

)
dP

=
∫

D

(
αE

(
X1 | G

)
+ βE

(
X2 | G

))
dP .

Observe that αE
(
X1 | G

)
+ βE

(
X2 | G

)
is G-measurable. Since E(αX1 + βX2 | G) is defined up

to a set of P-measure 0, we have the linear property

E(αX1 + βX2 | G) = αE
(
X1 | G

)
+ βE

(
X2 | G

)
.

Hence, E( · | G) is a linear map from Lp(Ω,F ,P) to Lp(Ω,G,P). Next, we define the norm

∥E( · | G)∥ = sup
X∈Lp(Ω,F ,P)

∥E(X | G)∥p

∥X∥p

.

We want to show that this norm is finite.

First of all, we will show that the function x 7→ |x|p is convex. Let x, y be any real number. For
p = 1, using the triangle inequality, we have for any t ∈ [0, 1]

|(1 − t)x + ty| ≤ |(1 − t)x| + |ty| = (1 − t)|x| + t|y|.
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Thus, x 7→ |x| is a convex function. For any p > 1, we also have for any t ∈ [0, 1],

|(1 − t)x + ty| ≤ (1 − t)|x| + t|y|.

Now, we use Hölder’s inequality:

|a1b1| + |a2b2| ≤ (|a1|p + |a2|p)1/p (|b1|q + |b2|q)1/q
,

for any p, q > 1 such that 1
p + 1

q = 1. Let a1 = (1 − t)1/p|x|, b1 = (1 − t)1/q, a2 = t1/p|y|, and
b2 = t1/q. Then, we have

|(1 − t)x + ty| ≤
∣∣∣(1 − t)1/p|x|

∣∣∣ ∣∣∣(1 − t)1/q
∣∣∣ +

∣∣∣t1/p|y|
∣∣∣ ∣∣∣t1/q

∣∣∣
≤ [(1 − t)|x|p + t|y|p]1/p [(1 − t) + t]1/q

= [(1 − t)|x|p + t|y|p]1/p
,

or equivalently,
|(1 − t)x + ty|p ≤ (1 − t)|x|p + t|y|p.

As a result, x 7→ |x|p is convex for any p > 1, and therefore, it is convex for any p ≥ 1.

Now, we use Jensen’s inequality (property 7 in Proposition 3.1.3 of the lecture notes): for any
univariate random variable X and any convex lower semi-continuous function φ : R → R ∪ {+∞},

φ
[
E(X | G)

]
≤ E

[
φ(X) | G

]
a.s.

Let φ(x) = |x|p for any x ∈ R. Then, we have for any X ∈ Lp(Ω,F ,P),

|E(X | G)|p ≤ E (|X|p | G) a.s. ⇐⇒ E (|X|p | G) − |E(X | G)|p ≥ 0 a.s.

Using the property of expectation values that E(X) ≥ 0 for any X ≥ 0 a.s., we have

0 ≤ E
[
E(|X|p | G) − |E(X | G)|p

]
,

or equivalently, by the linearity of expectations,

E
[
|E(X | G)|p

]
≤ E

[
E(|X|p | G)

]
= E(|X|p).

Hence, we have for any X ∈ Lp(Ω,F ,P),

∥E(X | G)∥p

∥X∥p

=
{
E

[
|E(X | G)|p

]}1/p[
E(|X|p)

]1/p
=

{
E

[
|E(X | G)|p

]
E(|X|p)

}1/p

≤ 1.

Since the right-hand side is a constant, we have

∥E( · | G)∥ = sup
X∈Lp(Ω,F ,P)

∥E(X | G)∥p

∥X∥p

≤ 1.

Therefore, E( · | G) is a bounded linear map from Lp(Ω,F ,P) to Lp(Ω,G,P).

Furthermore, E( · | G) is also a continuous linear map from Lp(Ω,F ,P) to Lp(Ω,G,P) (see for
example, Wikipedia: Bounded operator for the proof in a more general setting).
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https://en.wikipedia.org/wiki/H%C3%B6lder%27s_inequality
https://en.wikipedia.org/wiki/Bounded_operator

