Martingales

Tetta Watari 062001878

Exercise 3.2.2. Let $\{\mathcal{F}_t\}_{t\in\mathcal{T}}$ be a filtration on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let X be a univariate random variable on this space. Set $X_t := \mathbb{E}(X|\mathcal{F}_t)$. Show that $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\in\mathcal{T}}, (X_t)_{t\in\mathcal{T}})$ is a martingale.

Answer. It suffices to show that $\mathbb{E}(X_t|\mathcal{F}_s) = X_s$, namely $\mathbb{E}(\mathbb{E}(X|\mathcal{F}_t)|\mathcal{F}_s) = \mathbb{E}(X|\mathcal{F}_s)$ for all s < t. Given the property of a filtration that $\mathcal{F}_s \subset \mathcal{F}_t$ for any s < t, it holds a.s., by Proposition 3.1.3 - 5.

Exercise 3.2.3. Consider $\mathcal{T} = \mathbb{N}$ and a sequence $(X_n)_{n \in \mathbb{N}}$ of independent and real valued random variables satisfying $\mathbb{E}(X_n) = 0$. Set $Y_n := \sum_{j=1}^n X_j$. Show that $(Y_j)_{j \in \mathbb{N}}$ and the natural filtration define a martingale.

Answer. Let $(\mathcal{F}_n)_{n\in\mathbb{N}}$ be the natural filtration generated by $(Y_n)_{n\in\mathbb{N}}$. Since $Y_n = \sum_{j=1}^n X_j$, for m < n, $\mathbb{E}(Y_n | \mathcal{F}_m) = \sum_{j=1}^n \mathbb{E}(X_j | \mathcal{F}_m)$, by the linearity of conditional expectation (Proposition 3.1.3 - 1). For $j \le m$, X_j is \mathcal{F}_m -measurable, and therefore $\mathbb{E}(X_j | \mathcal{F}_m) = X_j$ (Proposition 3.1.3 - 2). For $m < j \le n$, on the other hand, $\mathbb{E}(X_j | \mathcal{F}_m) = \mathbb{E}(X_j) = 0$, since X_j is independent of \mathcal{F}_m (Proposition 3.1.3 - 6). Thus, $\mathbb{E}(Y_n | \mathcal{F}_m) = \sum_{j=1}^n \mathbb{E}(X_j | \mathcal{F}_m) = \sum_{j=1}^m X_j = Y_m$, which means $(\Omega, \mathcal{F}_{\mathbb{N}}, \mathbb{P}, (\mathcal{F}_n)_{n\in\mathbb{N}}, (Y_n)_{n\in\mathbb{N}})$ is a martingale.

Exercise 3.2.4. Show that the standard 1-dimensional Brownian motion is a martingale.

Answer. The standard 1-dimensional Brownian motion $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathcal{T}}, (B_t)_{t \in \mathcal{T}})$ satisfies:

- (i) $B_0 = 0$ a.s.
- (ii) For any $0 \le s \le t$, $B_t B_s$, the difference of the variable at time s and at time t, is independent of \mathcal{F}_s .
- (iii) For any $0 \le s \le t$, $B_t B_s$ is a Gaussian random variable with mean 0 and variance t s, namely N(0, t s).

What we need to show is $\mathbb{E}(B_t|\mathcal{F}_s) = B_s$ for s < t, but by the linearity, $\mathbb{E}(B_t|\mathcal{F}_s) = \mathbb{E}(B_s|\mathcal{F}_s) + \mathbb{E}(B_t - B_s|\mathcal{F}_s)$. Then the first term becomes B_s because of its \mathcal{F}_s -measurability while the second term becomes the mean value 0 of the random variable $B_t - B_s$ (iii), by the property of independence (ii). Therefore, $\mathbb{E}(B_t|\mathcal{F}_s) = \mathbb{E}(B_s|\mathcal{F}_s) + \mathbb{E}(B_t - B_s|\mathcal{F}_s) = B_s + 0 = B_s$, as needed.

Exercise 3.2.6. Let $(\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}_{t \in \mathbb{R}_+}, (B_t)_{t \in \mathbb{R}_+})$ be the standard 1-dimensional Brownian motion. Show that the new process defined by $X_t := B_t^2$ is a submartingale, but that the process defined by $X_t := B_t^2 - t$ is a martingale.

Answer. To utilize the property of the standard 1-dimensional Brownian motion, we decompose B_t^2 into $B_t^2 = (B_s + (B_t - B_s))^2 = B_s^2 + 2B_s(B_t - B_s) + (B_t - B_s)^2$. When $X_t = B_t^2$, for s < t, using the property as we did in the previous exercise,

$$\mathbb{E}(X_t|\mathcal{F}_s) = \mathbb{E}(B_t^2|\mathcal{F}_s) = \mathbb{E}(B_s^2|\mathcal{F}_s) + 2B_s\mathbb{E}(B_t - B_s|\mathcal{F}_s) + \mathbb{E}((B_t - B_s)^2|\mathcal{F}_s) = B_s^2 + (t - s),$$

where for the last term we used another expression of variance $\operatorname{Var}(B_t - B_s) = \mathbb{E}((B_t - B_s)^2) - \mathbb{E}(B_t - B_s)^2$ and the property of the standard 1-dimensional Brownian motion that $\mathbb{E}(B_t - B_s) = 0$, $\operatorname{Var}(B_t - B_s) = t - s$. Since s < t, $\mathbb{E}(B_t^2 | \mathcal{F}_s) = B_s^2 + (t - s) \ge B_s^2 = X_s$. Thus, when $X_t = B_t^2$, $(\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}_{t \in \mathbb{R}_+}, (X_t)_{t \in \mathbb{R}_+})$ is a submartingale.

When $X_t = B_t^2 - t$, using the above result, $\mathbb{E}(X_t | \mathcal{F}_s) = \mathbb{E}(B_t^2 - t | \mathcal{F}_s) = B_s^2 - s = X_s$ for s < t, which shows $(\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}_{t \in \mathbb{R}_+}, (X_t)_{t \in \mathbb{R}_+})$ is a martingale.