Some properties of the time evolution operator SML Introduction to Stochastic Calculus

Rasmus Peter Skadborg

Exercise 6.2.4

Let (Λ, \mathcal{E}) be a standard measurable space, and let $p : \mathbb{R}_+ \times \Lambda \times \mathcal{E} \to [0, 1]$ be a Markov transition function associated with a homogeneous Markov process X. For $f \in M_b(\Lambda)$, $t \ge 0$ and $y \in \Lambda$, we set

$$[U_t f](y) \coloneqq \int_{\Lambda} f(z) p(t, y, dz).$$

Note that, by definition of Markov processes associated to Markov transition functions (Definition 6.1.7), the right-hand side is a.s. equal to the conditional expectation $\mathbb{E}[f(X_t)|X_0 = y]$. We want to prove that the operator U_t has the following properties

- (1.) (Contraction) $||U_t f||_{\infty} \leq ||f||_{\infty}$ for any $t \geq 0, f \in M_b(\Lambda)$. In particular, U_t maps $M_b(\Lambda)$ to $M_b(\Lambda)$.
- (2.) (Semigroup) $U_s U_t = U_{s+t}$ for any $s, t \ge 0$.
- (3.) $(C_b(\Lambda) \text{ is an invariant subspace})$ If p has the Feller property, then $U_t f \in C_b(\Lambda)$ whenever $f \in C_b(\Lambda)$.

Let us start by proving Property 1. For $f \in M_b(\Lambda)$, let $M = ||f||_{\infty} = \sup_{z \in \Lambda} |f(z)|$. Then for any $y \in \Lambda$ and $t \ge 0$, we have

$$\left| \left[U_t f \right](y) \right| = \left| \int_{\Lambda} f(z) p(t, y, dz) \right| \le \int_{\Lambda} \left| f(z) \right| p(t, y, dz) \le \int_{\Lambda} M p(t, y, dz) = M,$$

$$\left\| U_t f \right\|_{-\infty} = \sup_{x \in \mathcal{U}} \left| \left[U_t f \right](y) \right| \le M - \left\| f \right\|_{-\infty}$$

 \mathbf{so}

$$||U_t f||_{\infty} = \sup_{y \in \Lambda} |[U_t f](y)| \le M = ||f||_{\infty}.$$

For property 2, we will need to use the Chapman-Kolmogorov equation, which reads

$$p(t, y, A) = \int_{\Lambda} p(t - s, z, A) p(s, y, dz)$$

for $0 \leq s < t$, $y \in \Lambda$ and $A \in \mathcal{E}$. Replacing the measures of A on the left and right hand sides by integrals of the indicator function $\mathbb{1}_A$, we get

$$\int_{\Lambda} \mathbb{1}_A(z) p(t, y, dz) = \int_{\Lambda} \left(\int_{\Lambda} \mathbb{1}_A(w) p(t - s, z, dw) \right) p(s, y, dz).$$

By approximating from below with simple functions and using the monotone convergence theorem, we then get for any positive measurable function f

$$\int_{\Lambda} f(z)p(t,y,dz) = \int_{\Lambda} \left(\int_{\Lambda} f(w)p(t-s,z,dw) \right) p(s,y,dz).$$
(1)

By writing $f \in M_b(\Lambda)$ as a difference of two bounded positive measurable functions, we see that this in fact holds for all $f \in M_b(\Lambda)$.

From this, we get for any $f \in M_b(\Lambda), s \ge 0, t > 0$ and $y \in \Lambda$,

$$\begin{split} \left[U_s U_t f\right](y) &= \int_{\Lambda} \left[U_t f\right](z) p(s, y, dz) \\ &= \int_{\Lambda} \left(\int_{\Lambda} f(w) p(t, z, dw)\right) p(s, y, dz) \\ &= \int_{\Lambda} \left(\int_{\Lambda} f(w) p((s+t) - s, z, dw)\right) p(s, y, dz) \\ &= \int_{\Lambda} f(z) p(t+s, y, dz) \\ &= \left[U_{s+t} f\right](y), \end{split}$$

(here we used (1) with s + t substituted for t, noting that $s \ge 0, t > 0$ implies $0 \le s < s + t$) so $U_s U_t = U_{s+t}$ holds for $s \ge 0, t > 0$. As for the case t = 0, we have

$$[U_0 f](y) = \mathbb{E}[f(X_0) | X_0 = y] = f(y)$$
 a.s.

so $[U_s U_0 f] = U_s f = U_{s+0} f$. We therefore have $U_s U_t = U_{s+t}$ for all $s, t \ge 0$.

Property 3 holds essentially by definition: For p to have the Feller property means that the map

$$\Lambda \ni y \mapsto \int_{\Lambda} f(z) p(h, y, dz) = [U_h f](y)$$

is continuous for any bounded and continuous $f : \Lambda \to \mathbb{R}$ and any $h \ge 0$. By property 1, it is also bounded, so whenever $f \in C_b(\Lambda)$, we have $U_t f \in C_b(\Lambda)$ for all $t \ge 0$.

References

[1] P. Baldi, Stochastic calculus, an introduction through theory and exercises, Universitext, Springer, 2017.