Several Exercises on Itô Integral Section

FIRDAUS Rafi Rizqy / 062101889

Special Mathematics Lecture: Introduction to Stochastic Calculus (Fall 2023)

Exercise 4.2.13.

Study the equality

$$
\int_{a}^{b} B_{t} \mathrm{~d} B_{t}=\frac{1}{2}\left(B_{b}^{2}-B_{a}^{2}-(b-a)\right) .
$$

The exercise above is based from ([2], pg. 36).
The results below are mainly based on (1], Example 4.2). For $n \in \mathbb{N}$, consider a partition \mathcal{P}_{n} defined by $a=t_{n, 0}<t_{n, 1}<t_{n, 2}<\cdots<t_{n, n}=b$, and let

$$
X_{n, t}=\sum_{i=0}^{n-1} B_{t_{n, i}} \mathbf{1}_{\left(t_{n, i}, t_{n, i+1}\right]}(t)
$$

with $\left(X_{n, t}\right)_{t \in[a, b]}$ is an adapted elementary process for all n and the equation above is just the same equation as Equation (4.2.2) ([2], pg. 34). Note that $B_{t_{n, i}}$ is $\mathcal{F}_{t_{n, i}}-$ measurable because Brownian process is a stochastic process. By the continuity of B_{t}, one has $\lim _{n \rightarrow \infty} X_{n, t}=B_{t}$ a.s. since one has $\sup _{i}\left(t_{n, i+1}-t_{n, i}\right) \rightarrow 0$. Thus, according to Definition 4.2.6 ([2], pg. 34) the Itô Integral of $X_{n, t}$ from a to b is given by

$$
\int_{a}^{b} X_{n, t} \mathrm{~d} B_{t}=\sum_{i=0}^{n-1} B_{t_{n, i}}\left(B_{t_{n, i+1}}-B_{t_{n, i}}\right)
$$

Observe that one has the following equality

$$
B_{t_{n, i}}\left(B_{t_{n, i+1}}-B_{t_{n, i}}\right)=\frac{1}{2}\left(B_{t_{n, i+1}}^{2}-B_{t_{n, i}}^{2}-\left(B_{t_{n, i+1}}-B_{t_{n, i}}\right)^{2}\right) .
$$

Hence, the Itô Integral becomes in the following form

$$
\int_{a}^{b} X_{n, t} \mathrm{~d} B_{t}=\frac{1}{2} \sum_{i=0}^{n-1}\left(B_{t_{n, i+1}}^{2}-B_{t_{n, i}}^{2}\right)-\frac{1}{2} \sum_{i=0}^{n-1}\left(B_{t_{n, i+1}}-B_{t_{n, i}}\right)^{2}
$$

The first summation on the right-hand side can be easily computed as follows

$$
\sum_{i=0}^{n-1}\left(B_{t_{n, i+1}}^{2}-B_{t_{n, i}}^{2}\right)=B_{t_{n, n}}^{2}-B_{t_{n, n-1}}^{2}+B_{t_{n, n-1}}^{2}-\cdots+B_{t_{n, 1}}^{2}-B_{t_{n, 0}}^{2}=B_{b}^{2}-B_{a}^{2}
$$

The summation computed above is telescopic. To compute the second summation on the right-hand side, one cannot use the same trick used in computing the first summation. Let us recall Theorem 2.4.8. ([2], pg. 19).

Theorem: Properties of 1-dimensional Brownian motion

Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}^{+}},\left(B_{t}\right)_{t \in \mathbb{R}^{+}}\right)$be a 1-dimensional Brownian motion.

1. Almost every path has an infinite variation on any finite interval, namely for any $a, b \in$ \mathbb{R}^{+},

$$
\mathbb{P}\left(\left\{\omega \in \Omega \mid \operatorname{var}_{[a, b]}\left(t \mapsto B_{t}(\omega)\right)=\infty\right\}\right)=1
$$

2. The quadratic variation of the Brownian motion converges in the L^{2}-sense, namely

$$
\lim _{\left|\mathcal{P}_{\ell}\right| \rightarrow 0} \mathbb{E}\left(\left[\sum_{j=0}^{n_{\ell}-1}\left(B_{t_{\ell, j+1}}-B_{t_{\ell, j}}\right)^{2}-(b-a)\right]^{2}\right)=0
$$

where $\left|\mathcal{P}_{\ell}\right|:=\max _{j \in\left\{0,1,2, \ldots, n_{\ell}-1\right\}}\left|t_{\ell, j+1}-t_{\ell, j}\right|$.
3. Almost every path is nowhere differentiable, namely

$$
\mathbb{P}\left(\left\{\omega \in \Omega \mid t \rightarrow B_{t}(\omega) \text { is nowhere differentiable }\right\}\right)=1
$$

Consider the second point of the theorem above. If one takes the limit $\left|\mathcal{P}_{\ell}\right| \rightarrow 0$, then it corresponds to taking the limit $n_{\ell} \rightarrow \infty$. Then, by using the second point of the theorem above (The quadratic variation of the Brownian motion converges in the L^{2}-sense), one has

$$
\int_{a}^{b} B_{t} \mathrm{~d} B_{t}=\lim _{n \rightarrow \infty} \int_{a}^{b} X_{n, t} \mathrm{~d} B_{t}=\frac{1}{2}\left(B_{b}^{2}-B_{a}^{2}-(b-a)\right) .
$$

Theorem 4.2.14. ([2], pg. 36)
Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \geq 0},\left(B_{t}\right)_{t \geq 0}\right)$ be the standard 1-dim. Brownian motion, and let $\left(X_{t}\right)_{t \in[0, T]},\left(Y_{t}\right)_{t \in[0, T]}$ be adapted stochastic processes belonging to $M^{2}([0, T])$. Then

$$
\mathbb{E}\left(\left(\int_{0}^{T} X_{t} \mathrm{~d} B_{t}\right)\left(\int_{0}^{T} Y_{t} \mathrm{~d} B_{t}\right)\right)=\int_{0}^{T} \mathbb{E}\left(X_{t} Y_{t}\right) \mathrm{d} t
$$

Let $I_{1}:=\int_{0}^{T} X_{t} \mathrm{~d} B_{t}$ and $I_{2}:=\int_{0}^{T} Y_{t} \mathrm{~d} B_{t}$. Observe that $I_{1} I_{2}$ can be expressed as follows
$I_{1} I_{2}=\frac{\left(I_{1}+I_{2}\right)^{2}}{2}-\frac{I_{1}^{2}}{2}-\frac{I_{2}^{2}}{2}=\frac{1}{2}\left(\int_{0}^{T} X_{t} \mathrm{~d} B_{t}+\int_{0}^{T} Y_{t} \mathrm{~d} B_{t}\right)^{2}-\frac{1}{2}\left(\int_{0}^{T} X_{t} \mathrm{~d} B_{t}\right)^{2}-\frac{1}{2}\left(\int_{0}^{T} Y_{t} \mathrm{~d} B_{t}\right)^{2}$.
Then, by using the isometry property of Itô Integral written in Proposition 4.2 .7 ([2], pg. 35), namely

$$
\mathbb{E}\left(\left(\int_{a}^{b} X_{t} \mathrm{~d} B_{t}\right)^{2} \mid \mathcal{F}_{a}\right)=\mathbb{E}\left(\int_{a}^{b} X_{t}^{2} \mathrm{~d} B_{t} \mid \mathcal{F}_{a}\right)
$$

By using the equation written above for $a=0, b=T$ and by the linearity of the expectation, one has

$$
\begin{aligned}
& \mathbb{E}\left(\left(\int_{0}^{T} X_{t} \mathrm{~d} B_{t}\right)\left(\int_{0}^{T} Y_{t} \mathrm{~d} B_{t}\right)\right) \\
& =\frac{1}{2} \mathbb{E}\left(\left(\int_{0}^{T} X_{t} \mathrm{~d} B_{t}+\int_{0}^{T} Y_{t} \mathrm{~d} B_{t}\right)^{2}\right)-\frac{1}{2} \mathbb{E}\left(\left(\int_{0}^{T} X_{t} \mathrm{~d} B_{t}\right)^{2}\right)-\frac{1}{2} \mathbb{E}\left(\left(\int_{0}^{T} Y_{t} \mathrm{~d} B_{t}\right)^{2}\right) \\
& =\frac{1}{2} \mathbb{E}\left(\left(\int_{0}^{T}\left(X_{t}+Y_{t}\right) \mathrm{d} B_{t}\right)^{2}\right)-\frac{1}{2} \mathbb{E}\left(\left(\int_{0}^{T} X_{t} \mathrm{~d} B_{t}\right)^{2}\right)-\frac{1}{2} \mathbb{E}\left(\left(\int_{0}^{T} Y_{t} \mathrm{~d} B_{t}\right)^{2}\right) \\
& =\frac{1}{2} \int_{0}^{T} \mathbb{E}\left(\left(X_{t}+Y_{t}\right)^{2}\right) \mathrm{d} t-\frac{1}{2} \int_{0}^{T} \mathbb{E}\left(X_{t}^{2}\right) \mathrm{d} t-\frac{1}{2} \int_{0}^{T} \mathbb{E}\left(Y_{t}^{2}\right) \mathrm{d} t \\
& =\frac{1}{2} \int_{0}^{T} \mathbb{E}\left(X_{t}^{2}+Y_{t}^{2}+2 X_{t} Y_{t}\right) \mathrm{d} t-\frac{1}{2} \int_{0}^{T} \mathbb{E}\left(X_{t}^{2}\right) \mathrm{d} t-\frac{1}{2} \int_{0}^{T} \mathbb{E}\left(Y_{t}^{2}\right) \mathrm{d} t \\
& =\frac{1}{2} \int_{0}^{T}\left(\mathbb{E}\left(X_{t}^{2}\right)+\mathbb{E}\left(Y_{t}^{2}\right)+2 \mathbb{E}\left(X_{t} Y_{t}\right)\right) \mathrm{d} t-\frac{1}{2} \int_{0}^{T} \mathbb{E}\left(X_{t}^{2}\right) \mathrm{d} t-\frac{1}{2} \int_{0}^{T} \mathbb{E}\left(Y_{t}^{2}\right) \mathrm{d} t \\
& =\int_{0}^{T} \mathbb{E}\left(X_{t} Y_{t}\right) \mathrm{d} t .
\end{aligned}
$$

References

[1] Fima C Klebaner. Introduction to stochastic calculus with applications. World Scientific Publishing Company, 2012.
[2] Serge Richard. Special Mathematics Lecture: Introduction to Stochastic Calculus. 2023.

