1-Dimensional Brownian Processes are Gaussian Processes

FIRDAUS Rafi Rizqy / 062101889

Special Mathematics Lecture: Introduction to Stochastic Calculus (Fall 2023)

Exercise 2.4.3.

Show that the Brownian process is a Gaussian process.

Proof:

Let us first write the definition of 1-dimensional Brownian motion (Definition 2.4.1) from the lecture note

Definition 2.4.1 (1-dimensional Brownian motion)

A Stochastic process $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}\right)_{t \in \mathbb{R}_{+}}\right)$taking values in \mathbb{R} is a 1 -dimensional Brownian motion if
(i) $B_{0}=\mathbf{0}$ a.s. (almost surely)
(ii) For any $0 \leq s \leq t$ the random variable $B_{t}-B_{s}$ is independent of \mathcal{F}_{s}
(iii) For any $0 \leq s \leq t$ the random variable $B_{t}-B_{s}$ is a Gaussian random variable $N(0, t-s)$.

From the definition above, we know that $B_{t}-B_{s}$ is a Gaussian r.v. for any $0 \leq s \leq t$ as the random variable behaves in accord with the normal distribution $N(0, t-s)$. To show that a Brownian process is a Gaussian process, we need to show that $B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{m}}$ are jointly Gaussian, namely we must show that $\alpha_{1} B_{t_{1}}+\cdots+\alpha_{m} B_{t_{m}}$ is a Gaussian random variable for arbitrary $\alpha_{1}, \ldots, \alpha_{m} \in \mathbb{R}$ and for $0 \leq t_{1}<t_{2}<\cdots<t_{m}$.
First, we know that $B_{t_{1}}$ is a Gaussian random variable because from (i) \& (iii) of Definition 2.4.1, we know that $B_{t_{1}}-B_{0}=B_{t_{1}}$ is a Gaussian random variable and is independent of \mathcal{F}_{0} by (ii). The strategy to prove the proposition above is by using proof by induction. Let us consider the case $m=2$. For $m=2$, we have the following expression

$$
\alpha_{1} B_{t_{1}}+\alpha_{2} B_{t_{2}}=\left(\alpha_{1}+\alpha_{2}\right) B_{t_{1}}+\alpha_{2}\left(B_{t_{2}}-B_{t_{1}}\right)
$$

Now, we know that $\left(\alpha_{1}+\alpha_{2}\right) B_{t_{1}}$ is a Gaussian random variable measurable with respect to $\mathcal{F}_{t_{1}}$ and we also know that $\alpha_{2}\left(B_{t_{2}}-B_{t_{1}}\right)$ is a Gaussian random variable independent of $\mathcal{F}_{t_{1}}$ by (ii). Hence, we know that $\alpha_{1} B_{t_{1}}+\alpha_{2} B_{t_{2}}$ is a Gaussian random variable. Let us assume that it is true for $m-1$
and let us prove the case m

$$
\alpha_{1} B_{t_{1}}+\alpha_{2} B_{t_{2}}+\cdots+\alpha_{m} B_{t_{m}}=\left(\alpha_{1} B_{t_{1}}+\alpha_{2} B_{t_{2}}+\cdots+\left(\alpha_{m-1}+\alpha_{m}\right) B_{t_{m-1}}\right)+\alpha_{m}\left(B_{t_{m}}-B_{t_{m-1}}\right)
$$

We know that $\left(\alpha_{1} B_{t_{1}}+\alpha_{2} B_{t_{2}}+\cdots+\left(\alpha_{m-1}+\alpha_{m}\right) B_{t_{m-1}}\right)$ is a Gaussian random variable by the induction assumption and is measurable with respect to $\mathcal{F}_{t_{m-1}}$. Then, we also know that $\alpha_{m}\left(B_{t_{m}}-B_{t_{m-1}}\right)$ is a Gaussian random variable by (iii) of Definition 2.4.1 and is independent of $\mathcal{F}_{t_{m-1}}$ by (ii) of Definition 2.4.1. Hence, $B_{t_{1}}, B_{t_{2}}, \ldots, B_{t_{m}}$ are jointly Gaussian and therefore the Brownian process is a Gaussian process.

