Summary of the Ornstein-Uhlenbeck process

A. Stationery property

The Ornstein-Uhlenbeck process Y_t is the Gaussian process with mean $\mathbb{E}[Y_t] = 0$ and if it starts with $Y_0 = 0$, the covariance is of the form:

$$Cov(Y_s, Y_t) = \frac{1}{2} e^{-(t-s)} (1 - e^{-2s})$$
, for $s \le t$

However, if the starting point Yo is Gaussian with mean 0 and variance $\frac{1}{2}$, we have $\mathbb{E}[Y_t] = 0$ and the covariance is of the form: $Cov(Y_s, Y_t) = \frac{1}{2}e^{-(t-s)}$, for $s \le t$

We can see that the covariance only depends on the difference of time. This means that if we shift this process Y_t to Y_{t+a} , where $a \ge 0$, the process will still have the same distribution. This is called a stationery property.

B. As an Ito integral

We can write the Ornstein-Uhlenbeck process as,

$$Y_t = e^{-t} \int_0^t e^s dB_s , t \ge 0$$

with mean 0 and the covariance,

$$\mathbb{E}\left[Y_{t}Y_{s}\right] = e^{-t-s} \int_{0}^{s} e^{2u} du = \frac{1}{2} \left(e^{-(t-s)} - e^{-(t+s)}\right) = \frac{1}{2} e^{-(t-s)} \left(1 - e^{-2s}\right), \quad s \leq t.$$

We can also start the process at Yo, a Gaussian random variable of mean 0 and variance $\frac{1}{2}$ independent of the Brownian motion Bt. The process then takes the form,

$$Y_{t} = Y_{0}e^{-t} + e^{-t} \int_{0}^{t} e^{s} dB_{s}$$

Since To and the Ito integral are independent by assumption, then $\mathbb{E}[Y_tY_s] = \frac{1}{2}e^{-t-s} + \frac{1}{2}(e^{-(t-s)} - e^{-(t+s)}) = \frac{1}{2}e^{-(t-s)}, s \leq t$

C. As a stochastic differential equation

For the Ito integral of the Ornstein-Uhlenbeck process in the previous section,

$$Y_t = Y_0 e^{-t} + e^{-t} \int_0^t e^s dB_s$$

note that this process is an explicit function of t, and of the Ito process $X_t = Y_0 + \int_0^t e^s dB_s$. So, we have $Y_t = f(t, X_t)$ with $f(t, x) = e^{-t}x$, and this is not in an explicit function of t and B_t so the Ito's formula is not directly applicable.

Since $\partial_1 f = e^{-t}$, $\partial_1^2 f = 0$, and $\partial_0 f = -f$, we get from Ito's formula for Ito processes. $df(t, X_t) = \partial_1 f(t, X_t) dX_t + \left(\partial_0 f(t, X_t) + \frac{1}{2} \partial_1^2 f(t, X_t) e^{2t}\right) dt$ $dY_t = e^{-t} dX_t + \left(-f(t, X_t) + 0\right) dt$ $dY_t = e^{-t} dX_t - Y_t dt = dB_t - Y_t dt$

This differential equation is in fact has a nice interpretation: the drift is positive if $Y_t < 0$ and negative if $Y_t > 0$, and proportional to the position. This is the mechanism that ensures the process to not venture too far from 0 and is eventually stationery.

We can also add two parameters for the volatility and the drift, $dY_t = -kY_t\,dt + \sigma\,dB_t\,,\;\;k\in\mathbb{R}\,,\sigma>0$

and the solution for this stochastic differential equation is, $Y_t = Y_0 e^{-kt} + e^{-kt} \int_0^t e^{ks} \sigma dB_s$

Note that if K < 0, the solution doesn't converge to a stationery distribution.

D. References

A First Course in Stochastic Calculus. Louis-Pierre Arguin. p 38-39, 113, 159.