Gambler's Ruin problem with Brownian Motion without Drift

Tran Quynh Le Phuong

January 24, 2024

1 Introduction

This report studies the Gambler's Ruin problem with Brownian Motion without Drift with the following description: Suppose a gambler starts with an initial amount of money \boldsymbol{b} and wishes to reach an amount of \boldsymbol{a} before going broke (or, running out of \boldsymbol{b} .

(1) What is the probability that the gambler wins (reach a before losing all the money b.

(2) What is the expected waiting time before losing all the money b.

2 Presentation of (1)

Let a, b > 0 with a > b. Let $(B_t, t \ge 0)$ be a standard Brownian motion starting at $B_0 = b$.

Define the first hitting time:

 $\tau(\boldsymbol{w}) = \inf(\boldsymbol{t} > 0 | \boldsymbol{B}_{\boldsymbol{t}}(\boldsymbol{w}) \ge \boldsymbol{a} \text{ or } \boldsymbol{B}_{\boldsymbol{t}}(\boldsymbol{w}) \le 0).$

The proof that $\tau(\boldsymbol{w}) < \infty$ except for a set of \boldsymbol{w} of measure 0 is as follows: Consider an event that n-th increments exceeds \boldsymbol{a} , represented as

 $E_n = \{|B_n - B_{n-1}|\} > a.$

If E_n happens, indicating that the two consecutive gambling can give out a higher payoff than the sum of initial money and winning money for one time, then the Brownian path must exit [0,a].

Define probability that E_n happens as $P(E_n)$. We have $P(E_n) = P(E_1)$:=p for all n, with $p \in (0, 1)$. As the events E_n are independent, we have

$$\boldsymbol{P}(\boldsymbol{E_1^c} \cap \boldsymbol{E_2^c} \cap \boldsymbol{E_3^c} ... \cap \boldsymbol{E_n^c}) = \boldsymbol{P}(\boldsymbol{E_1^c}) \boldsymbol{P}(\boldsymbol{E_2^c}) \boldsymbol{P}(\boldsymbol{E_3^c}) ... \boldsymbol{P}(\boldsymbol{E_n^c}) = (1 - \boldsymbol{p})^{\boldsymbol{n}}.$$

Following, we have

 $\lim_{n \to \infty} P(E_1^c \cap E_2^c \cap E_3^c ... \cap E_n^c) = \lim_{n \to \infty} (1 - p)^n = 0$

As such probability is equal to 0, E_n needs to have occurred with some n, thus $\tau(w) < \infty$.

If $\tau(w) = t$, then $B_t(w) = B_\tau(w)$, the question equals finding $P(B_\tau(w) = a)$. We have

$$E(B_{\tau}) = aP(B_{\tau} = a) + 0(1 - P(B_{\tau} = a)).$$
 (1)

From Theorem 3.2.18, we have $\boldsymbol{E}(\boldsymbol{B}_{\tau}) = \boldsymbol{E}(\boldsymbol{B}_{0}) = \boldsymbol{b}$. (2) From (1) and (2), we have

$$P(B_{\tau} = a) = \frac{b}{a}.$$

3 Presentation of (2)

Consider the same τ as described in the previous section. Consider the martingale $M_t = B_t^2 - t$. From Theorem 3.2.18, we also obtain

$$m{E}(m{M}_{ au}) = m{E}(m{M}_{0}) = m{E}(m{B}_{0}^{2})$$
 - $m{E}(0) = m{b}^{2}1$ - $0 = m{b}^{2}$.
 $m{E}(m{M}_{ au}) = m{E}(m{B}_{ au}^{2} - au) = m{E}(m{B}_{ au}^{2})$ - $m{E}(au)$.

From the previous section, we can infer $E(B_{\tau}^2) = a^2 P(B_{\tau} = a) + 0^2 (P(B\tau = 0) = a^2 \frac{b}{a} = ab.$

Combining every part, we obtain

$$b^2 = E(M_{\tau}) = ab - E(\tau)$$

$$\Leftrightarrow E(\tau) = b(a - b).$$