Gambler's Ruin problem with Brownian Motion without Drift

Tran Quynh Le Phuong

January 24, 2024

1 Introduction

This report studies the Gambler's Ruin problem with Brownian Motion without Drift with the following description: Suppose a gambler starts with an initial amount of money \boldsymbol{b} and wishes to reach an amount of \boldsymbol{a} before going broke (or, running out of \boldsymbol{b}.
(1) What is the probability that the gambler wins (reach \boldsymbol{a} before losing all the money \boldsymbol{b}.
(2) What is the expected waiting time before losing all the money \boldsymbol{b}.

2 Presentation of (1)

Let $\boldsymbol{a}, \boldsymbol{b}>0$ with $\boldsymbol{a}>\boldsymbol{b}$. Let $\left(\boldsymbol{B}_{\boldsymbol{t}}, \boldsymbol{t} \geq 0\right)$ be a standard Brownian motion starting at $\boldsymbol{B}_{0}=\boldsymbol{b}$.
Define the first hitting time:

$$
\tau(\boldsymbol{w})=\inf \left(\boldsymbol{t}>0 \mid \boldsymbol{B}_{\boldsymbol{t}}(\boldsymbol{w}) \geq \boldsymbol{a} \text { or } \boldsymbol{B}_{\boldsymbol{t}}(\boldsymbol{w}) \leq 0\right) .
$$

The proof that $\tau(\boldsymbol{w})<\infty$ except for a set of \boldsymbol{w} of measure 0 is as follows: Consider an event that n-th increments exceeds \boldsymbol{a}, represented as

$$
\boldsymbol{E}_{n}=\left\{\left|\boldsymbol{B}_{\boldsymbol{n}}-\boldsymbol{B}_{\boldsymbol{n}-\mathbf{1}}\right|\right\}>\boldsymbol{a}
$$

If \boldsymbol{E}_{n} happens, indicating that the two consecutive gambling can give out a higher payoff than the sum of initial money and winning money for one time, then the Brownian path must exit $[0, a]$.

Define probability that $\boldsymbol{E}_{\boldsymbol{n}}$ happens as $\boldsymbol{P}\left(\boldsymbol{E}_{\boldsymbol{n}}\right)$. We have $\boldsymbol{P}\left(\boldsymbol{E}_{\boldsymbol{n}}\right)=\boldsymbol{P}\left(\boldsymbol{E}_{\mathbf{1}}\right)$ $:=\boldsymbol{p}$ for all \boldsymbol{n}, with $\boldsymbol{p} \in(0,1)$.
As the events $\boldsymbol{E}_{\boldsymbol{n}}$ are independent, we have

$$
\boldsymbol{P}\left(\boldsymbol{E}_{1}^{\boldsymbol{c}} \cap \boldsymbol{E}_{2}^{c} \cap \boldsymbol{E}_{3}^{c} \ldots \cap \boldsymbol{E}_{n}^{\boldsymbol{c}}\right)=\boldsymbol{P}\left(\boldsymbol{E}_{1}^{\boldsymbol{c}}\right) \boldsymbol{P}\left(\boldsymbol{E}_{2}^{\boldsymbol{c}}\right) \boldsymbol{P}\left(\boldsymbol{E}_{3}^{\boldsymbol{c}}\right) \ldots \boldsymbol{P}\left(\boldsymbol{E}_{n}^{\boldsymbol{c}}\right)=(1-\boldsymbol{p})^{\boldsymbol{n}}
$$

Following, we have

$$
\lim _{\boldsymbol{n} \rightarrow \infty} \boldsymbol{P}\left(\boldsymbol{E}_{1}^{\boldsymbol{c}} \cap \boldsymbol{E}_{2}^{\boldsymbol{c}} \cap \boldsymbol{E}_{3}^{\boldsymbol{c}} \ldots \cap \boldsymbol{E}_{n}^{\boldsymbol{c}}\right)=\lim _{\boldsymbol{n} \rightarrow \infty}(1-\boldsymbol{p})^{\boldsymbol{n}}=0
$$

As such probability is equal to $0, \boldsymbol{E}_{\boldsymbol{n}}$ needs to have occurred with some \boldsymbol{n}, thus $\tau(\boldsymbol{w})<\infty$.
If $\tau(\boldsymbol{w})=\boldsymbol{t}$, then $\boldsymbol{B}_{\boldsymbol{t}}(\boldsymbol{w})=\boldsymbol{B}_{\tau}(\boldsymbol{w})$, the question equals finding $\boldsymbol{P}\left(\boldsymbol{B}_{\tau}(\boldsymbol{w})=\boldsymbol{a}\right)$. We have

$$
\boldsymbol{E}\left(\boldsymbol{B}_{\tau}\right)=\boldsymbol{a} \boldsymbol{P}\left(\boldsymbol{B}_{\tau}=\boldsymbol{a}\right)+0\left(1-\boldsymbol{P}\left(\boldsymbol{B}_{\tau}=\boldsymbol{a}\right)\right.
$$

From Theorem 3.2.18, we have $\boldsymbol{E}\left(\boldsymbol{B}_{\tau}\right)=\boldsymbol{E}\left(\boldsymbol{B}_{0}\right)=\boldsymbol{b}$. (2) From (1) and (2), we have

$$
\boldsymbol{P}\left(\boldsymbol{B}_{\tau}=\boldsymbol{a}\right)=\frac{b}{a}
$$

3 Presentation of (2)

Consider the same τ as described in the previous section.
Consider the martingale $\boldsymbol{M}_{\boldsymbol{t}}=\boldsymbol{B}_{\boldsymbol{t}}^{2}-\boldsymbol{t}$.
From Theorem 3.2.18, we also obtain
$\boldsymbol{E}\left(\boldsymbol{M}_{\tau}\right)=\boldsymbol{E}\left(\boldsymbol{M}_{0}\right)=\boldsymbol{E}\left(\boldsymbol{B}_{0}^{2}\right)-\boldsymbol{E}(0)=\boldsymbol{b}^{2} 1-0=\boldsymbol{b}^{2}$.

$$
\boldsymbol{E}\left(\boldsymbol{M}_{\tau}\right)=\boldsymbol{E}\left(\boldsymbol{B}_{\tau}^{2}-\tau\right)=\boldsymbol{E}\left(\boldsymbol{B}_{\tau}^{2}\right)-\boldsymbol{E}(\tau)
$$

From the previous section, we can infer
$\boldsymbol{E}\left(\boldsymbol{B}_{\tau}^{2}\right)=\boldsymbol{a}^{2} \boldsymbol{P}\left(\boldsymbol{B}_{\tau}=\boldsymbol{a}\right)+0^{2}\left(\boldsymbol{P}(\boldsymbol{B} \tau=0)=\boldsymbol{a}^{2} \frac{\boldsymbol{b}}{\boldsymbol{a}}=\boldsymbol{a} \boldsymbol{b}\right.$.
Combining every part, we obtain

$$
\begin{gathered}
\boldsymbol{b}^{2}=\boldsymbol{E}\left(\boldsymbol{M}_{\tau}\right)=\boldsymbol{a} \boldsymbol{b}-\boldsymbol{E}(\tau) \\
\Leftrightarrow \quad \boldsymbol{E}(\tau)=\boldsymbol{b}(\boldsymbol{a}-\boldsymbol{b})
\end{gathered}
$$

