On Martingales

Definition 3.2.1 (Martingale, supermartingale, submartingale). For $\mathcal{T} \subset \mathbb{R}_{+}$, a real valued stochastic process $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathcal{T}},\left(M_{t}\right)_{t \in \mathcal{T}}\right)$ satisfying $M_{t} \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ for any $t \in \mathcal{T}$ is a martingale if $\mathbb{E}\left(M_{t} \mid \mathscr{F}_{s}\right)=M_{s}$ for all $s \leq t$. It is a supermartingale if $\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right) \leq M_{s}$ or a submartingale if $\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right) \geq M_{s}$.

Exercise 3.2.2. Let $\left\{\mathcal{F}_{t}\right\}_{t \in \mathcal{T}}$ be a filtration on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let X be a univariate random variable on this space, with $\mathbb{E}(|X|)<\infty$. Set $X_{t}:=\mathbb{E}\left(X \mid \mathcal{F}_{t}\right)$. Show that $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathcal{T}},\left(X_{t}\right)_{t \in \mathcal{T}}\right)$ is a martingale.

$$
\mathbb{E}(|x|)<\infty \Rightarrow X \in \mathcal{L}^{\prime}\{\Omega, \tilde{F}, \mathbb{P}\} \quad[\text { Def 1.4.1] }
$$

set $x_{t}:=\mathbb{E}\left(X \mid \tilde{F}_{t}\right)$
then,

$$
\begin{aligned}
\mathbb{E}\left(X_{t} \mid F_{s}\right) & =\mathbb{E}\left(\mathbb{E}\left(x \mid F_{t}\right) \mid F_{s}\right) \text { for }[s<t] \\
& =\mathbb{E}\left(X \mid F_{s}\right) \\
& =X_{s}
\end{aligned}
$$

Therefore X_{t} is a martingale.
Exercise 3.2.4. Show that the standard ${ }^{5}$ 1-dimensional Brownian process is a martingale.
Let $B:=\left(\Omega, \mathcal{F}, \mathbb{P},\left(\widetilde{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}\right)_{t \in \mathbb{R}_{+}}\right)$taking values in \mathbb{R} be a 1-D Brownian motion. Then,

$$
\begin{aligned}
\mathbb{E}\left(B_{t} \mid F_{s}\right) & =\mathbb{E}\left(B_{t}-B_{s}+B_{s} \mid F_{s}\right) \\
& =\mathbb{E}\left(B_{t}-B_{s} \mid F_{s}\right)+\mathbb{E}\left(B_{s} \mid F_{s}\right) \\
& =\mathbb{E}\left(B_{t}-B_{s}\right)+\mathbb{L}\left(B_{s} \mid F_{s}\right) \\
& =0+B_{s}
\end{aligned}
$$

(1): $B_{t}-B_{s}$ and B_{s} are independent by definion.
$\therefore 1$ Brownian motion is a martingale.

Exercise 3.2.6. Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}\right)_{t \in \mathbb{R}_{+}}\right)$be the standard 1 -dimensional Brownian process. Show that the new process defined by $X_{t}:=B_{t}^{2}$ is a submartingale, but that the process defined by $X_{t}:=B_{t}^{2}-t$ is a martingale.

To prove $X_{t}:=B_{t}^{2}-t$ is a martingale :

$$
\begin{aligned}
\mathbb{E}\left(X_{t} \mid F_{s}\right) & =\mathbb{E}\left(B_{t}^{2}-t \mid F_{s}\right) \quad[\text { for } s<t] \\
& =\mathbb{E}\left(\left(B_{t}-B_{s}+B_{s}\right)^{2}-t \mid F_{s}\right) \\
& =\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2}+2\left(B_{t}-B_{s}\right) B_{s}+B_{s}^{2}-t \mid \mathbb{F}_{s}\right) \\
& =\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2} \mid F_{s}\right)+2 \mathbb{E}\left(\left(B_{t}-B_{s}\right) B_{s} \mid F_{s}\right)+\mathbb{E}\left(B_{s}^{2}-t \mid F_{s}\right) \\
& =\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2}\right)+2 \mathbb{E}\left(B_{s}\right) \mathbb{E}\left(B_{t}-B_{s}\right)+B_{s}^{2}-t \\
& =(t-s)+B_{s}^{2}-t \\
& =B_{s}^{2}-s
\end{aligned}
$$

To prove that $X_{t}:=B_{t}^{2}$ is a submartingale. For $s<t$ we have:

$$
\begin{aligned}
\mathbb{E}\left(x_{t} \mid F_{s}\right) & =\mathbb{E}\left(B_{t}^{2} \mid \mathbb{F}_{s}\right) \\
& =\mathbb{E}\left(\left(B_{t}-B_{s}+B_{s}\right)^{2} \mid F_{s}\right) \\
& =\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2}+2 B_{s}\left(B_{t}-B_{s}\right)+B_{s}^{2} \mid \overparen{F}_{s}\right) \\
& =\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2} \mid T_{s}\right)+2 \mathbb{E}\left(B_{s}\left(B_{t}-B_{s}\right) \mid T_{s}\right)+\mathbb{E}\left(B_{s}^{2} \mid F_{s}\right) \\
& \left.=(t-s)+2 \mathbb{E} / B_{s}\right) \mathbb{E}\left(B_{t}-B_{s}\right)+B_{s}^{2} \\
& =(t-s)+B_{s}^{2} \geqslant B_{s}^{2}
\end{aligned}
$$

$\therefore X_{t}:=B_{t}^{2}$ is a submartingale.

Exercise 3.2.5. Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}\right)_{t \in \mathbb{R}_{+}}\right)$be the standard 1 -dimensional Brownian process, and consider the geometric Brownian process defined by $S_{t}:=S_{0} \exp \left(\sigma B_{t}+\mu t\right)$, with $\sigma>0, \mu \in \mathbb{R}$, and $S_{0} \in \mathbb{R}$ an arbitrary initial value. Show that this process is a martingale if and only if $\mu=-\frac{1}{2} \sigma^{2}$.
A stochastic process $\left(X_{t}\right)_{t \in T}$ adapted to the filteration $\left(\mathcal{F}_{t}\right)_{t \in T}$ is a martingale if for all $s<t, \mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}\right)=X_{s}$.

Given,

$$
S_{t}=S_{0} \exp \left(\sigma B_{t}+\mu t\right) \quad\left[\sigma>0 \& \mu \in \mathbb{R}, S_{0} \in \mathbb{R}\right]
$$

Now,

$$
\begin{aligned}
\mathbb{E}\left(S_{t} \mid \tilde{F}_{s}\right) & =\mathbb{E}\left(S_{0} \exp \left(\sigma B_{t}+\mu t\right) \mid F_{s}\right) \\
& =\mathbb{E}\left(S_{0} \exp \left(\sigma\left(B_{s}+\left(B_{t}-B_{s}\right)\right)+\mu(s+(t-s)) \mid F_{s}\right)\right. \\
& =\mathbb{E}\left(S_{0} \exp \left(\sigma B_{s}+\mu s\right) \exp \left(\sigma\left(B_{t}-B_{s}\right)+\mu(t-s)\right) \mid F_{s}\right) \\
\mathbb{A}- & =s_{0} \exp \left(\sigma B_{s}+\mu s\right) \mathbb{E}\left(\exp \left(\sigma\left(B_{t}-B_{s}\right)+\mu(t-s)\right) \mid F_{s}\right)
\end{aligned}
$$

Now if $\left(S_{t}\right)_{t \in T}$ is a martingale, then $\mathbb{E}\left(S_{t} \mid F_{s}\right)=S_{s}$

$$
\begin{aligned}
& \Rightarrow A=S_{0} \exp \left(\sigma B_{S}+\mu S\right) \\
& \quad \Rightarrow \mathbb{E}\left(\exp \left(\sigma\left(B_{t}-B_{S}\right)+\mu(+-s)\right) \mid F_{S}\right)=1
\end{aligned}
$$

since $B_{t}-B_{y}$ is independent of F_{s} we have:

$$
=\mathbb{E}\left(\exp \left(\sigma\left(B_{t}-B_{s}\right)+\mu(t-s)\right)=1\right.
$$

We know the mgf for a ID Gaussian process is given by:

$$
M_{z}(t)=\exp \left(\bar{x} t+\frac{1}{2} \sigma^{2} t^{2}\right)
$$

we know that the increment $B_{t}-B_{s}$ of a Brownian motion is normally distributed with mean 0 and variance $t-s$, 1.e $B_{t}-B_{s} \sim N(0, t-s)$. Therefore the mgf for $\sigma\left(B_{t}-B_{s}\right)$ is given by:

$$
\mathbb{E}\left(\exp \left(\sigma\left(B_{t}-B_{s}\right)\right)=\exp \left(\frac{1}{2} \sigma^{2}(t-s)\right)\right.
$$

follows $\left(\Rightarrow \exp \left(\mu(t-s)+\frac{1}{2} \sigma^{2}(t-s)\right)=1\right.$
from prov \longrightarrow page)

$$
\begin{aligned}
& \mu(t-s)+\frac{1}{2} \sigma^{2}(t-s)=0 \\
& \Rightarrow \mu=-\frac{1}{2} \sigma^{2}
\end{aligned}
$$

Special thanks to my friend Tsunekawa Haruki, for helping me understand Martingales better. Without his help I would not have been able to solve these exercises.

