SML: Introduction to Stochastic Calculus Nagoya University Fall 2023.

Submitted by: Pratham Dhomne (062201880)

On Martingales

Definition 3.2.1 (Martingale, supermartingale, submartingale). For $\mathcal{T} \subset \mathbb{R}_+$, a real valued stochastic process $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathcal{T}}, (M_t)_{t \in \mathcal{T}})$ satisfying $M_t \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ for any $t \in \mathcal{T}$ is a martingale if $\mathbb{E}(M_t | \mathcal{F}_s) = M_s$ for all $s \leq t$. It is a supermartingale if $\mathbb{E}(M_t | \mathcal{F}_s) \leq M_s$ or a submartingale if $\mathbb{E}(M_t | \mathcal{F}_s) \geq M_s$.

Exercise 3.2.2. Let $\{\mathcal{F}_t\}_{t\in\mathcal{T}}$ be a filtration on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let X be a univariate random variable on this space, with $\mathbb{E}(|X|) < \infty$. Set $X_t := \mathbb{E}(X|\mathcal{F}_t)$. Show that $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\in\mathcal{T}}, (X_t)_{t\in\mathcal{T}})$ is a martingale.

Exercise 3.2.4. Show that the standard⁵ 1-dimensional Brownian process is a martingale.

Let $B := (-2, F, P, (F_t)_{terr_t}, (B_t)_{terr_t})$ taking values in R be a 1-D Brownian motion. Then, $E(B_t(F_s) = E(B_t - B_s + B_s | F_s))$

:. 10 Brownian motion is a martingale.

Exercise 3.2.6. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (B_t)_{t \in \mathbb{R}_+})$ be the standard 1-dimensional Brownian process. Show that the new process defined by $X_t := B_t^2$ is a submartingale, but that the process defined by $X_t := B_t^2 - t$ is a martingale.

To prove $X_t := B_t^2 - t$ is a martingale : $\mathbb{E}(X_{t}|F_{s}) = \mathbb{E}(B_{t}^{2} - t|F_{s}) \quad [for s < t]$ $= \mathbb{E}\left(\left(B_{t} - B_{s} + B_{s}\right)^{2} - t \left(\mathbb{F}_{s}\right)\right)$ $= \mathbb{E} \left((B_{t} - B_{s})^{2} + 2(B_{t} - B_{s})B_{s} + B_{s}^{2} - t | F_{s} \right)$ $= \mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2}|F_{s}\right) + 2\mathbb{E}\left(\left(B_{t}-B_{s}\right)B_{s}|F_{s}\right) + \mathbb{E}\left(B_{s}^{2}-t|F_{s}\right)$ $= \mathbb{E}((B_{4}-B_{5})^{2}) + 2\mathbb{E}(B_{5})\mathbb{E}(B_{6}-B_{5}) + B_{5}^{2} - t$ $= (t-s) + B_s^2 - t$ $= \beta_{S}^{2} - S$ To prove that $X_t := B_t^2$ is a submartingale. For s<t we have: $\mathbb{E}(X_{t}|F_{s}) = \mathbb{E}(B_{t}^{2}|F_{s})$ $= \mathbb{E}\left(\left(B_{t} - B_{s} + B_{s}\right)^{2} | F_{s}\right)$ $= \mathbb{E}\left(\left(B_{\xi} - B_{\xi}\right)^{2} + 2B_{\xi}\left(B_{\xi} - B_{\xi}\right) + B_{\xi}^{2}\left|\widehat{F_{\xi}}\right)\right)$

Exercise 3.2.5. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (B_t)_{t \in \mathbb{R}_+})$ be the standard 1-dimensional Brownian process, and consider the geometric Brownian process defined by $S_t := S_0 \exp(\sigma B_t + \mu t)$, with $\sigma > 0$, $\mu \in \mathbb{R}$, and $S_0 \in \mathbb{R}$ an arbitrary initial value. Show that this process is a martingale if and only if $\mu = -\frac{1}{2}\sigma^2$.

$M_{z}(t) = \exp\left(\bar{x}t + \frac{1}{2}\sigma^{2}t^{2}\right)$

we know that the increment $B_t - B_s$ of a Brownian motion is normally distributed with mean 0 and variance t-s, i.e. $B_t - B_s \sim N(0, t-s)$. Therefore the mgf for $\sigma(B_t - B_s)$ is given by: $E(exp(\sigma(B_t - B_s)) = exp(\pm \sigma^2(t-s))$

Special thanks to my friend Tsunekawa Haruki, for helping me understand Martingales better. Without his help I would not have been able to solve these exercises.