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This report aims to provide a solution to the Exercise 1.2.5. of the lecture notes.
We first start with a short overview on the Gaussian integral which we would encounter
while evaluating several integrals for the statements discussed in the exercise.
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1 The Gaussian integral

The Gaussian function comes up quite often in the study of probability and statistics,
because of its relation to the normal distribution. If we restrict ourselves to one dimension,
the standard Gaussian function is defined as f(x) = e−x2 . If we take an indefinite integral
of the standard Gaussian function, it can be shown that it cannot be expressed in terms of
elementary functions. Interestingly enough, it is possible to evaluate the definite integral
of the standard Gaussian function over the real line. In fact, for any a ∈ R+ and b ∈ R :∫ ∞

−∞
e−a(x+b)2dx =

√
π

a
.
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For the sake of simplicity, we make use of multivariable calculus and polar coordinates,
transforming the integral into a form that is easier to compute. Precisely, we make use
of the following property:(∫ ∞

−∞
e−x2

dx

)2

=

∫ ∞

−∞
e−x2

dx

∫̇ ∞

−∞
e−y2dy =

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dxdy

The polar coordinate transformation simplifies the integration process, allowing for a more
manageable computation of the Gaussian integral, in the following way: Set x2+ y2 = r2

and switching to polar coordinates which introduces a factor or r since the Jacobian of
this transformation is r:∫∫

R2

e−(x2+y2)dxdy =

∫ 2π

θ=0

∫ ∞

r=0

e−r2rdrdθ

=

∫ 2π

θ=0

dθ

∫ ∞

0

re−r2dr (set −r2 = s)

= 2π

∫ 0

−∞

1

2
esds

= π

∫ 0

−∞
esds

= π
(
e0 − e−∞)

= π.

Therefore we have: (∫ ∞

−∞
e−x2

dx

)2

= π

i.e., ∫
R
e−x2

dx =
√
π.

Similarly, one can show that ∫
R
e−a(x+b)2dx =

√
π

a
. (1)

2 The Univariate Gaussian Random Variable

Recall that any function Π : RN → [0,∞) satisfying
∫
Π(x)dx = 1, or any function p

from a finite set or a countable set Λ to [0, 1] satisfying
∑

x p(x) = 1, defines the pdf or
the pmf of a random variable.

Exercise 1.2.5

For σ > 0 and x ∈ R, set Π : R → [0,∞) by:

Π(x) :=
1√
2πσ

exp
(
− 1

2σ2
(x− x)2

)
Check that

∫
R Π(x)dx = 1. In the framework of Reminder 1.1.12, we write

X = N(x, σ2) for the corresponding univariate random variable, called a Gaus-
sian random variable. Check that E(X) = x and Var(X) = σ2.
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Hence, we start by showing
∫
RΠ(x)dx = 1:∫

R
Π(x)dx =

∫
R

1√
2πσ

exp
(
− 1

2σ2
(x− x)2

)
dx .

We make the following substitution,

u =

√
1

2σ2
(x− x).

Note that the Jacobian of this transformation is
√
2σ, hence we have:

1√
2πσ

∫
R

exp
(
− 1

2σ2
(x− x)2

)
dx =

1√
2πσ

∫
R
e−u2√

2σdu

=
1√
2πσ

√
2πσ (from (1))

= 1 .

2.1 Expectation of X or E
(
N(x, σ2)

)
Lets start by recalling the definition of Expectation:

Expectation

Let (Ω,F ,P) be a probability space, let (Λ, E) and (Ξ,G) be measurable spaces and
assume (Ξ,G) be standard, let X : Ω → Λ be a random variable, and let f : Λ → Ξ
be a measurable function. The expectation of f(X) is defined by:

E(f(X)) :=

∫
Λ

f(x)µx(dx)

If (Λ, E) is standard and equal to (Ξ,G) and if f denotes the indentity function id
with id(x) = x, then we write E(X) for E(id(X)), and call it the mean value of X,
of the expectation of X.

Note that in the current setting, (Λ, E) and (Ξ,G) both are standard i.e. (R, σB).
Hence, we are in the setting of a regular Riemann integration and have:

E(X) =

∫ ∞

−∞

1√
2πσ

exp
(
− 1

2σ2
(x− x)2

)
· xdx

=
1√
2πσ

(∫ ∞

−∞
(x− x) exp

(
− 1

2σ2
(x− x)2

)
dx+

∫ ∞

−∞
x exp

(
− 1

2σ2
(x− x)2

)
dx

)
.

Looking at the first integral:∫ ∞

−∞
(x− x) exp

(
− 1

2σ2
(x− x)2

)
dx .
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We make the following substitution u = 1√
2σ
(x− x), the Jacobian of this transformation

is
√
2σ and the bounds of integration remain the same. Hence we have,∫

R
(x− x) exp

(
− 1

2σ2
(x− x)2

)
dx =

∫ ∞

−∞

√
2σu exp (−u2)

√
2σdu

= 2σ2

∫ ∞

−∞
u exp (−u2)du .

Notice that u exp (−u2) is an odd function, hence its integral over a symmetric domain
should be zero. Hence we have,

E(X) = 0 +
1√
2πσ

(∫
R
x exp

(
− 1

2σ2
(x− x)2

)
dx

)
=

x√
2πσ

(∫
R

exp
(
− 1

2σ2
(x− x)2

)
dx

)
=

x√
2πσ

·
√
2πσ (from (1))

= x .

Therefore, we have shown that E(X) = x.

2.2 Variance of X or Var(N(x, σ2))

Variance

Let (Ω,F ,P) be a probability space, and let X be a univariate random variable
defined on it. Then the variance of X is defined by

Var(X) := E
(
(X − E(X))2

)
Hence we have,

Var(X) = E((X − E(X))2) = E((X − x)2)

That is,

Var(X) =

∫ ∞

−∞

(x− x)2√
2πσ

exp
(
− 1

2σ2
(x− x)2

)
dx =

∫ ∞

−∞

(x2 − 2xx+ x2)√
2πσ

exp
(
− 1

2σ2
(x− x)2

)
dx

=
1√
2πσ

∫ ∞

−∞
x2 exp

(
− 1

2σ2
(x− x)2

)
dx− 1√

2πσ

∫ ∞

−∞
2xx exp

(
− 1

2σ2
(x− x)2

)
dx

+
1√
2πσ

∫ ∞

−∞
x2 exp

(
− 1

2σ2
(x− x)2

)
dx

=

∫ ∞

−∞

x2

√
2πσ

exp
(
− 1

2σ2
(x− x)2

)
dx− x2 .

Hence, we just have to evaluate the first integral. For which we can make the following
substitution: u = x− x∫ ∞

−∞

x2

√
2πσ

exp
(
− 1

2σ2
(x− x)2

)
dx =

1√
2πσ

∫
R
(u+ x)2 exp

(
− u2

2σ2

)
du
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Expanding the first term inside the integral we get,

1√
2πσ

(∫ ∞

−∞
u2 exp

(
− u2

2σ2

)
+ 2x

∫ ∞

−∞
u exp

(
− u2

2σ2

)
+ x2

∫ ∞

−∞
exp

(
− u2

2σ2

))
Now, notice that the third integral is trivial and is just unity when multiplied by the
constant term in the front. The first 2 integrals on the other hand, can be evaluated
using integration by parts and it can be checked that we get the following result,

1√
2πσ

(
σ3 ·

√
2π + 0 + x2 ·

√
2πσ

)
= σ2 + x2

The result E(X2) = σ2 + x2 can also be taken as a property for the Gaussian random
variable. Therefore we have,

Var(X) = (σ2 + x2)− x2 = σ2

Summarizing, we have shown the following for the univariate Gaussian random vari-
able X:

1.
∫
R Π(x)dx = 1

2. E(X) = x

3. Var(X) = σ2

3 The Multivariate Gaussian Random Variable

In this section we consider the N dimensional multivariate Gaussian random variable.
We first begin with providing a proof that the p.d.f is normalized.

Multivariate Gaussian Random Variable

For x ∈ RN and P ∈ MN×N(R) with P > 0, set Π : RN → R+ with

Π(x) := 1√
(2π)N |P |

exp
(
−1

2
(x − x)TP−1(x − x)

)
(2)

Where P > 0 meaning P is positive definite ⇐⇒ yTPy > 0 for all y ∈ RN\{0} and
|P | := det(P ). We write X = N(x, P ) for the corresponding multivariate random
variable, called the N -dim Gaussian random variable.

To show :∫
RN

Π(x)dx = 1 ⇐⇒
∫
RN

exp
(
−1

2
(x − x)TP−1(x − x)

)
dx =

√
(2π)N |P |

We first consider the exponential part

exp
(
−1

2
(x − x)TP−1(x − x)

)
.
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For simplicity lets make the following change of variables y = (x − x). Note that the
Jacobain of this transformation is 1 so our integral remains the same. Hence we can
rewrite the exponential as following:

exp
(
−1

2
(x − x)TP−1(x − x)

)
= exp

(
−1

2
yTP−1y

)
.

Going back to the assumptions on the matrix P , we observe that since P > 0 (i.e. P is
positive definite) all of its eigenvalues are strictly positive and hence we can diagonalize
it. Precisely, there exists an orthogonal matrix U and a diagonal matrix S made up of
eigenvalues of P , such that P = USUT . Therefore, P−1 = US−1UT substituting this into
the exponential to get:

exp
(
−1

2
yTUS−1UTy

)
= exp

(
−1

2
(UTy)TS−1UTy

)
.

Now we make another substitution z = UTy, since U is an orthogonal matrix we have
det(U) = det(UT ) = 1 therefore the Jacobian of this transformation is also 1, hence our
integral does not change.

exp
(
−1

2
(UTy)TS−1UTy

)
= exp

(
−1

2
zTS−1z

)
.

Now lets consider the diagonal matrix S made up of all the eigenvalues of P . Let the set
of eigenvalues of P be {λi}Ni=1 where λi ∈ R and λi > 0 ∀i ∈ {1, .., N}.

S =


λ1 0 · · · 0
0 λ2 · · · 0
... ... . . . ...
0 0 · · · λN

 =⇒ S−1 =


1
λ1

0 · · · 0

0 1
λ2

· · · 0
... ... . . . ...
0 0 · · · 1

λN

 .

So the product zTS−1z reduces down just a sum of squares, precisely

zTS−1z =
N∑
i=1

z2i
λi

.

Substituting this in the exponential it becomes,

exp
(
−1

2
zTS−1z

)
= exp

(
−1

2

N∑
i=1

z2i
λi

)
=

N∏
i=1

exp
(
− z2i
2λi

)
Hence, our original integral now becomes∫

RN

exp
(
−1

2
(x − x)TP−1(x − x)

)
dx =

∫
RN

exp
(
−1

2
zTS−1z

)
dz

=

∫
RN

N∏
i=1

exp
(
− z2i
2λi

)
dz

=
N∏
i=1

∫ ∞

−∞
exp

(
− z2i
2λi

)
dzi
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=
N∏
i=1

√
2πλi

=
√

(2π)n|λ1 · λ2 · · ·λN |
=
√

(2π)N |P | .

3.1 Expectation of X or E (N(x, P ))

The expectation of a random variable X as discussed in the univariate case is given by
the following expression

E(f(X)) =

∫
Λ

f(x)µX(dx)

Hence the expectation of the multivariate gaussian random variable can be written as:

E(X) =

∫
RN

x√
(2π)N |P |

exp
(
−1

2
(x − x)TP−1(x − x)

)
dx .

One notable difference from the univariate case is that the left hand side of this equation
E(X) is itself a N -dim vector, we will have an integral for each component xi of x.
Proceeding with a similar fashion as the univariate case we can rewrite the above integral
as

E(X) =

∫
RN

x − x√
(2π)N |P |

exp
(
−1

2
(x − x)TP−1(x − x)

)
dx

+

∫
RN

x√
(2π)N |P |

exp
(
−1

2
(x − x)TP−1(x − x)

)
dx .

With suitable substitutions it can be shown that first integral vanishes and we only have
the second integral.

E(X) =

∫
RN

x√
(2π)N |P |

exp
(
−1

2
(x − x)TP−1(x − x)

)
dx

=
x√

(2π)N |P |

∫
RN

exp
(
−1

2
(x − x)TP−1(x − x)

)
dx

=
x√

(2π)N |P |
·
√

(2π)N |P |

= x .
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