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1 Motivation
The aim of this report is to provide an equivalent definition for a Gaussian vector via the
Moment Generating Function (MGF). The main idea can be found in [Arg] Proposition 2.9,
as the proof is based on the definition of a Gaussian vector, as well as some properties of the
expectation, variance, and MGF.

2 Background
We shall start by recalling the definition of a Gaussian random variable and a Gaussian vector.

Definition 1. (Gaussian random variable) For 𝜎 > 0 and �̄� ∈ R set Π : R → R+ by

Π(𝑥) :=
1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2
(𝑥− �̄�)2

)︂
,

we write 𝑋 = 𝑁(�̄�, 𝜎2) for the corresponding univariate random variable, called Gaussian
random variable. One may check that E(𝑋) = �̄�, and Var(𝑋) = 𝜎2.

Definition 2. (Gaussian vector) An N-dimensional random vector 𝑋 = (𝑋1, ..., 𝑋𝑁)
𝑇 on a

probability space (Ω,ℱ ,P) is said to be a Gaussian vector if for any 𝑎 = (𝑎1, ..., 𝑎𝑁)
𝑇 ∈ R𝑁

(𝑎 ̸= 0) the random variable 𝑎 ·𝑋 :=
∑︀𝑁

𝑗=1 𝑎𝑗𝑋𝑗 is a Gaussian random variable on (Ω,ℱ ,P).

Definition 3. For �̄� ∈ R𝑁 and 𝑃 ∈ 𝑀𝑁×𝑁(R) with 𝑃 > 0, set Π : R𝑁 → R+ by

Π(𝑥) :=
1

(2𝜋)𝑁/2|𝑃 |1/2
exp

(︂
−1

2
(𝑥− �̄�)𝑇𝑃−1(𝑥− �̄�)

)︂
,

with |𝑃 | := det(𝑃 ). We write 𝑋 = 𝑁(�̄�, 𝑃 ) for the corresponding multivariate random vari-
able, called 𝑁 -dimensional Gaussian random variable. One may check that E(𝑋) = �̄�, and
that 𝑃 = E((𝑋 − �̄�)(𝑋 − �̄�)𝑇 ). Here, 𝑃 is called the covariance matrix, for which we write
Cov(𝑋) := 𝑃 .

Remark: The function Π for both Gaussian random variables is called the probability density
function, or simply the PDF.
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3 An Alternative View on Gaussian Vectors
The goal of this report is to prove the following proposition, corresponding to Proposition 2.1.4.
from [Ric], subsequently giving an alternative definition for a Gaussian vector.

Proposition 4 An N-dimensional random vector 𝑋 = (𝑋1, ..., 𝑋𝑁)
𝑇 is Gaussian if and only

if its moment generating function E(𝑒𝑎·𝑋) exists for all 𝑎 ∈ R𝑁 (𝑎 ̸= 0) and satisfies

E(𝑒𝑎·𝑋) = exp
(︁
𝑎 · E(𝑋) + 1

2
𝑎𝑇Cov(𝑋)𝑎

)︁
. (1)

Proof. Consider “only if ” direction: Given 𝑋 a Gaussian random vector, we want to show
that its MGF will have the form of (1). By definition 2, 𝑎 ·𝑋 is a univariate Gaussian random
variable for all 𝑎 ∈ R𝑁 (𝑎 ̸= 0). We shall write 𝑌 for the corresponding univariate Gaussian
random variable.

The following proof is similar to Gaussian vector of standard Gaussian distributions by
Uyanga Khoroldagva but covers more general case for 𝑌 being any univariate Gaussian random
variable.

From Expectations for absolutely continuous and discrete random variables by Rafi Muflih
Abdur we state that E(𝑒𝑌 ) =

´
R 𝑒

𝑦 Π(𝑦) d𝑦. For simplicity, let 𝑦 := E(𝑌 ), 𝜎2 := Var(𝑌 ).

Evaluating the integral we obtain

E(𝑒𝑌 ) =
ˆ
R
𝑒𝑦Π(𝑦) d𝑦

=

ˆ
R

exp(𝑦)
1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2
(𝑦 − 𝑦)2

)︂
d𝑦

=

ˆ
R

1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2
(𝑦 − 𝑦)2 + 𝑦

)︂
d𝑦

=

ˆ
R

1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2
(𝑦 − 𝑦)2 − 1

2𝜎2
(−2𝜎2𝑦)

)︂
d𝑦

=

ˆ
R

1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2

(︀
(𝑦 − 𝑦)2 − 2𝜎2𝑦

)︀)︂
d𝑦 .

Now we complete the square in the integral expression

E(𝑒𝑌 ) =
ˆ
R

1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2

(︀
(𝑦 − (𝑦 + 𝜎2))2 − 2𝑦𝜎2 − 𝜎4

)︀)︂
d𝑦

= exp(𝑦 +
1

2
𝜎2)

ˆ
R

1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2

(︀
(𝑦 − (𝑦 + 𝜎2))2

)︀)︂
d𝑦 .

Notice that the expression in the integral is a PDF of a univariate Gaussian random variable
𝑁(𝑦 + 𝜎2, 𝜎2). Hence, the integral equals one.

E(𝑒𝑌 ) = exp(𝑦 +
1

2
𝜎2)

ˆ
R

1√
2𝜋𝜎

exp
(︂
− 1

2𝜎2

(︀
(𝑦 − (𝑦 + 𝜎2𝑦))2

)︀)︂
d𝑦

= exp(𝑦 +
1

2
𝜎2) · 1

= exp(𝑦 +
1

2
𝜎2).

Therefore, we had proved that for the univariate Gaussian random variable 𝑌 the MGF for the
first moment has the form

E(𝑒𝑌 ) = exp(𝑦 +
1

2
𝜎2), (2)
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where 𝑦 = E(𝑌 ), 𝜎2 = Var(𝑌 ).

We shall now make two important observations about the mean and the variance of a linear
combination of random variables. The mean of the linear combination is

E(𝑎 ·𝑋) = E(𝑎1𝑋1 + ...+ 𝑎𝑁𝑋𝑁) = 𝑎1𝑥1 + ...+ 𝑎𝑁𝑥𝑁 = 𝑎 · �̄� = 𝑎 · E(𝑋), (3)

where �̄� is the mean vector of 𝑋. Furthermore, since we denoted the linear combination 𝑎 ·𝑋
as a univariate Gaussian random variable 𝑌 , one infers that 𝑎 · �̄� = 𝑦. Namely,

𝑦 = 𝑎 · E(𝑋). (4)

The variance is obtained using linearity of expectation

𝜎2 = Var(𝑌 ) = Var(𝑎 ·𝑋) = E
(︁
(𝑎 · (𝑋 − �̄�))2

)︁
= E

(︁
(𝑎𝑇 (𝑋 − �̄�))(𝑎𝑇 (𝑋 − �̄�))𝑇

)︁
= 𝑎𝑇 E

(︁
(𝑋 − �̄�)(𝑋 − �̄�)𝑇

)︁
𝑎

= 𝑎𝑇 Cov(𝑋) 𝑎.

Namely,
𝜎2 = 𝑎𝑇 Cov(𝑋) 𝑎. (5)

Now all that is left is to rewrite the result (2) using (4) and (5).

E(𝑒𝑎·𝑋) = E(𝑒𝑌 )

= exp(𝑦 +
1

2
𝜎2)

= exp(𝑎 · E(𝑋) +
1

2
𝑎𝑇 Cov(𝑋) 𝑎)

Observation: Following the result (3) E(𝑎𝑋) = 𝑎E(𝑋) (note that 𝑋 is now a univariate
Gaussian random variable and 𝑎 ∈ R) and using Var(𝑋) = E((𝑋 − E(𝑋))2) one may notice
that the change of variable in (2) 𝑎𝑋 := 𝑌 for some 𝑡 ∈ R yields the general form of the MGF
of a univariate Gaussian random variable Y

E(𝑒𝑡𝑌 ) = exp(𝑡E(𝑌 ) +
1

2
𝑡2Var(𝑌 )). (6)

Consider “if ” direction: Let 𝑎 ∈ R𝑁 , 𝑡 ∈ R. We know that

E(𝑒𝑡(𝑎·𝑋)) = exp(𝑡E(𝑎 ·𝑋) +
1

2
𝑡2𝑎𝑇Cov(𝑋)𝑎).

Set 𝑌 := 𝑎 ·𝑋. Then we have

E(𝑒𝑡𝑌 ) = exp(𝑡E(𝑌 ) +
1

2
𝑡2Var(𝑌 )).

By Theorem 1.3.4 from [Ric], since E(𝑒𝑡𝑌 ) exists ∀𝑡 ∈ R, it defines 𝑌 uniquely. Since E(𝑒𝑡𝑌 )
has the form of the MGF of a univariate Gaussian random variable (6), then by uniqueness,
𝑌 = 𝑁

(︁
E(𝑌 ),Var(𝑌 )

)︁
=⇒ 𝑎 ·𝑋 = 𝑁

(︁
E(𝑌 ),Var(𝑌 )

)︁
∀𝑎 ∈ R

=⇒ 𝑋 is a Gaussian vector.
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