On the MGF of a Gaussian vector
 SML Fall 2023: Introduction to Stochastic Calculus

Oleh Dmytruk

February 1, 2024

1 Motivation

The aim of this report is to provide an equivalent definition for a Gaussian vector via the Moment Generating Function (MGF). The main idea can be found in [Arg] Proposition 2.9, as the proof is based on the definition of a Gaussian vector, as well as some properties of the expectation, variance, and MGF.

2 Background

We shall start by recalling the definition of a Gaussian random variable and a Gaussian vector.

Definition 1. (Gaussian random variable) For $\sigma>0$ and $\bar{x} \in \mathbb{R}$ set $\Pi: \mathbb{R} \rightarrow \mathbb{R}_{+}$by

$$
\Pi(x):=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(x-\bar{x})^{2}\right),
$$

we write $X=N\left(\bar{x}, \sigma^{2}\right)$ for the corresponding univariate random variable, called Gaussian random variable. One may check that $\mathbb{E}(X)=\bar{x}$, and $\operatorname{Var}(X)=\sigma^{2}$.

Definition 2. (Gaussian vector) An N-dimensional random vector $X=\left(X_{1}, \ldots, X_{N}\right)^{T}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is said to be a Gaussian vector if for any $a=\left(a_{1}, \ldots, a_{N}\right)^{T} \in \mathbb{R}^{N}$ $(a \neq 0)$ the random variable $a \cdot X:=\sum_{j=1}^{N} a_{j} X_{j}$ is a Gaussian random variable on $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 3. For $\bar{x} \in \mathbb{R}^{N}$ and $P \in M_{N \times N}(\mathbb{R})$ with $P>0$, set $\Pi: \mathbb{R}^{N} \rightarrow \mathbb{R}_{+}$by

$$
\Pi(x):=\frac{1}{(2 \pi)^{N / 2}|P|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\bar{x})^{T} P^{-1}(x-\bar{x})\right),
$$

with $|P|:=\operatorname{det}(P)$. We write $X=N(\bar{x}, P)$ for the corresponding multivariate random variable, called N-dimensional Gaussian random variable. One may check that $\mathbb{E}(X)=\bar{x}$, and that $P=\mathbb{E}\left((X-\bar{x})(X-\bar{x})^{T}\right)$. Here, P is called the covariance matrix, for which we write $\operatorname{Cov}(X):=P$.

Remark: The function Π for both Gaussian random variables is called the probability density function, or simply the PDF.

3 An Alternative View on Gaussian Vectors

The goal of this report is to prove the following proposition, corresponding to Proposition 2.1.4. from [Ric], subsequently giving an alternative definition for a Gaussian vector.

Proposition 4 An N-dimensional random vector $X=\left(X_{1}, \ldots, X_{N}\right)^{T}$ is Gaussian if and only if its moment generating function $\mathbb{E}\left(e^{a \cdot X}\right)$ exists for all $a \in \mathbb{R}^{N}(a \neq 0)$ and satisfies

$$
\begin{equation*}
\mathbb{E}\left(e^{a \cdot X}\right)=\exp \left(a \cdot \mathbb{E}(X)+\frac{1}{2} a^{T} \operatorname{Cov}(X) a\right) \tag{1}
\end{equation*}
$$

Proof. Consider "only if" direction: Given X a Gaussian random vector, we want to show that its MGF will have the form of (1). By definition $2, a \cdot X$ is a univariate Gaussian random variable for all $a \in \mathbb{R}^{N}(a \neq 0)$. We shall write Y for the corresponding univariate Gaussian random variable.

The following proof is similar to Gaussian vector of standard Gaussian distributions by Uyanga Khoroldagva but covers more general case for Y being any univariate Gaussian random variable.

From Expectations for absolutely continuous and discrete random variables by Rafi Muflih Abdur we state that $\mathbb{E}\left(e^{Y}\right)=\int_{\mathbb{R}} e^{y} \Pi(y) \mathrm{d} y$. For simplicity, let $\bar{y}:=\mathbb{E}(Y), \sigma^{2}:=\operatorname{Var}(Y)$.

Evaluating the integral we obtain

$$
\begin{aligned}
\mathbb{E}\left(e^{Y}\right) & =\int_{\mathbb{R}} e^{y} \Pi(y) \mathrm{d} y \\
& =\int_{\mathbb{R}} \exp (y) \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(y-\bar{y})^{2}\right) \mathrm{d} y \\
& =\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(y-\bar{y})^{2}+y\right) \mathrm{d} y \\
& =\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}(y-\bar{y})^{2}-\frac{1}{2 \sigma^{2}}\left(-2 \sigma^{2} y\right)\right) \mathrm{d} y \\
& =\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left((y-\bar{y})^{2}-2 \sigma^{2} y\right)\right) \mathrm{d} y .
\end{aligned}
$$

Now we complete the square in the integral expression

$$
\begin{aligned}
\mathbb{E}\left(e^{Y}\right) & =\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\left(y-\left(\bar{y}+\sigma^{2}\right)\right)^{2}-2 \bar{y} \sigma^{2}-\sigma^{4}\right)\right) \mathrm{d} y \\
& =\exp \left(\bar{y}+\frac{1}{2} \sigma^{2}\right) \int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\left(y-\left(\bar{y}+\sigma^{2}\right)\right)^{2}\right)\right) \mathrm{d} y .
\end{aligned}
$$

Notice that the expression in the integral is a PDF of a univariate Gaussian random variable $N\left(\bar{y}+\sigma^{2}, \sigma^{2}\right)$. Hence, the integral equals one.

$$
\begin{aligned}
\mathbb{E}\left(e^{Y}\right) & =\exp \left(\bar{y}+\frac{1}{2} \sigma^{2}\right) \int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\left(y-\left(\bar{y}+\sigma^{2} y\right)\right)^{2}\right)\right) \mathrm{d} y \\
& =\exp \left(\bar{y}+\frac{1}{2} \sigma^{2}\right) \cdot 1 \\
& =\exp \left(\bar{y}+\frac{1}{2} \sigma^{2}\right) .
\end{aligned}
$$

Therefore, we had proved that for the univariate Gaussian random variable Y the MGF for the first moment has the form

$$
\begin{equation*}
\mathbb{E}\left(e^{Y}\right)=\exp \left(\bar{y}+\frac{1}{2} \sigma^{2}\right) \tag{2}
\end{equation*}
$$

where $\bar{y}=\mathbb{E}(Y), \sigma^{2}=\operatorname{Var}(Y)$.
We shall now make two important observations about the mean and the variance of a linear combination of random variables. The mean of the linear combination is

$$
\begin{equation*}
\mathbb{E}(a \cdot X)=\mathbb{E}\left(a_{1} X_{1}+\ldots+a_{N} X_{N}\right)=a_{1} \overline{x_{1}}+\ldots+a_{N} \overline{x_{N}}=a \cdot \bar{x}=a \cdot \mathbb{E}(X), \tag{3}
\end{equation*}
$$

where \bar{x} is the mean vector of X. Furthermore, since we denoted the linear combination $a \cdot X$ as a univariate Gaussian random variable Y, one infers that $a \cdot \bar{x}=\bar{y}$. Namely,

$$
\begin{equation*}
\bar{y}=a \cdot \mathbb{E}(X) . \tag{4}
\end{equation*}
$$

The variance is obtained using linearity of expectation

$$
\begin{aligned}
\sigma^{2}=\operatorname{Var}(Y)=\operatorname{Var}(a \cdot X) & =\mathbb{E}\left((a \cdot(X-\bar{x}))^{2}\right) \\
& =\mathbb{E}\left(\left(a^{T}(X-\bar{x})\right)\left(a^{T}(X-\bar{x})\right)^{T}\right) \\
& =a^{T} \mathbb{E}\left((X-\bar{x})(X-\bar{x})^{T}\right) a \\
& =a^{T} \operatorname{Cov}(X) a .
\end{aligned}
$$

Namely,

$$
\begin{equation*}
\sigma^{2}=a^{T} \operatorname{Cov}(X) a . \tag{5}
\end{equation*}
$$

Now all that is left is to rewrite the result (2) using (4) and (5).

$$
\begin{aligned}
\mathbb{E}\left(e^{a \cdot X}\right) & =\mathbb{E}\left(e^{Y}\right) \\
& =\exp \left(\bar{y}+\frac{1}{2} \sigma^{2}\right) \\
& =\exp \left(a \cdot \mathbb{E}(X)+\frac{1}{2} a^{T} \operatorname{Cov}(X) a\right)
\end{aligned}
$$

Observation: Following the result (3) $\mathbb{E}(a X)=a \mathbb{E}(X)$ (note that X is now a univariate Gaussian random variable and $a \in \mathbb{R})$ and using $\operatorname{Var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)$ one may notice that the change of variable in (2) $a X:=Y$ for some $t \in \mathbb{R}$ yields the general form of the MGF of a univariate Gaussian random variable Y

$$
\begin{equation*}
\mathbb{E}\left(e^{t Y}\right)=\exp \left(t \mathbb{E}(Y)+\frac{1}{2} t^{2} \operatorname{Var}(Y)\right) \tag{6}
\end{equation*}
$$

Consider "if" direction: Let $a \in \mathbb{R}^{N}, t \in \mathbb{R}$. We know that

$$
\mathbb{E}\left(e^{t(a \cdot X)}\right)=\exp \left(t \mathbb{E}(a \cdot X)+\frac{1}{2} t^{2} a^{T} \operatorname{Cov}(X) a\right) .
$$

Set $Y:=a \cdot X$. Then we have

$$
\mathbb{E}\left(e^{t Y}\right)=\exp \left(t \mathbb{E}(Y)+\frac{1}{2} t^{2} \operatorname{Var}(Y)\right)
$$

By Theorem 1.3.4 from [Ric], since $\mathbb{E}\left(e^{t Y}\right)$ exists $\forall t \in \mathbb{R}$, it defines Y uniquely. Since $\mathbb{E}\left(e^{t Y}\right)$ has the form of the MGF of a univariate Gaussian random variable (6), then by uniqueness, $Y=N(\mathbb{E}(Y), \operatorname{Var}(Y))$
$\Longrightarrow a \cdot X=N(\mathbb{E}(Y), \operatorname{Var}(Y)) \forall a \in \mathbb{R}$
$\Longrightarrow X$ is a Gaussian vector.

References

[Arg] J.-L. Arguin, A first course in stochastic calculus.
[Ric] S. Richard, Introduction to Stochastic Calculus: Cumulative notes.

