BROWNIAN MARTINGALES

SML INTRODUCTION TO STOCHASTIC CALCULUS

LI GUOMING

In this report, we shall give some fundamental examples of martingales related to Brownian motions. Let us first recall the definition of martingales, supermartingales and submartingales:

Definition 1 (martingale, supermartingale, submartingale). For $\mathcal{T} \subset \mathbb{R}_+$, a real value stochastic process $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathcal{T}}, (M_t)_{t \in \mathcal{T}})$ satisfying $M_t \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ for any $t \in \mathcal{T}$ is a martingale if $\mathbb{E}(M_t | \mathcal{F}_s) = M_s$ for all $s \leq t$. It is a supermartingale if $\mathbb{E}(M_t | \mathcal{F}_s) \leq M_s$ or a submartingale if $\mathbb{E}(M_t | \mathcal{F}_s) \geq M_s$.

We intend to prove several statements by following the above definition.

Proposition 2. The standard 1-dimensional Brownian motion is a martingale.

Proof. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (B_t)_{t \in \mathbb{R}_+})$ be the standard 1-dimensional Brownian motion. We see that for all $t \in \mathbb{R}_+$, $B_t \in L^2(\Omega, \mathcal{F}, \mathbb{P}) \subset L^1(\Omega, \mathcal{F}, \mathbb{P})$ as

$$\mathbb{E}(B_t^2) = \operatorname{Var}(B_t) + \mathbb{E}(B_t)^2 = t < \infty.$$

Now note that for all $t, s \in \mathbb{R}_+$ such that $t \geq s$,

$$\mathbb{E}(B_t | \mathcal{F}_s) = \mathbb{E}(B_s + B_t - B_s | \mathcal{F}_s)$$

= $\mathbb{E}(B_s | \mathcal{F}_s) + \mathbb{E}(B_t - B_s | \mathcal{F}_s)$
= $B_s + \mathbb{E}(B_t - B_s)$
= B_s ,

which implies that $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (B_t)_{t \in \mathbb{R}_+})$ is a martingale.

Proposition 3. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (B_t)_{t \in \mathbb{R}_+})$ be the standard 1-dimensional Brownian motion. Let the geometric Brownian motion be defined by $S_t := S_0 \exp(\sigma B_t + \mu t)$, with $\sigma > 0, \mu \in \mathbb{R}$, and $S_0 \in \mathbb{R}$ an arbitrary initial value. Then this process is a martingale if and only if $\mu = -\frac{1}{2}\sigma^2$.

To prove this statement, we shall make use of the lemma given below, which is a slightly stronger result compared with **Proposition 3.1.3** 4. given in the lecture notes.

Lemma 4. Let X be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a standard measurable space (Λ, \mathcal{E}) and further assume that $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$. Let \mathcal{G} be a σ -subalgebra of \mathcal{F} . If W is an univariate \mathcal{G} -measurable random variable such that $WX \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, then $\mathbb{E}(WX|\mathcal{G}) = W\mathbb{E}(X|\mathcal{G})$ a.s..

Proof. We may assume W is nonnegative, otherwise, we may write $W = W_+ - W_-$ and apply linearity, where $W_+ = \max\{W, 0\}, W_- = \max\{-W, 0\}$. Then there exists a sequence $\{\phi_n\}$ of increasing nonnegative simple functions converging to W pointwise. Then for all $n \in \mathbb{N}$, we know that $\phi_n X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$.

For the case in which X is nonnegative, for any $D \in \mathcal{G}$, by the monotone convergence theorem, we have

$$\int_{D} \mathbb{E}(WX|\mathcal{G})d\mathbb{P} = \int_{D} WXd\mathbb{P} = \lim_{n \to \infty} \int_{D} \phi_n Xd\mathbb{P} = \lim_{n \to \infty} \int_{D} \phi_n \mathbb{E}(X|\mathcal{G})d\mathbb{P} = \int_{D} W\mathbb{E}(X|\mathcal{G})d\mathbb{P},$$

implying $\mathbb{E}(WX|\mathcal{G}) = W\mathbb{E}(X|\mathcal{G})$ a.s., where the third equality comes from the fact that ϕ_n is a simple function.

For the general case in which X is not always nonnegative, from Jensen's inequality, we have

$$\mathbb{E}(|X| | \mathcal{G}) \ge |\mathbb{E}(X|\mathcal{G})|.$$

Hence

$$|\phi_n \mathbb{E}(X|\mathcal{G})| \le \phi_n \mathbb{E}(|X||\mathcal{G}) \le W \mathbb{E}(|X||\mathcal{G})$$

From our previous result, we know that $\mathbb{E}(W|X||\mathcal{G}) = W\mathbb{E}(|X||\mathcal{G})$ a.s., thus $W\mathbb{E}(|X||\mathcal{G}) \in L^1(\Omega, \mathcal{G}, \mathbb{P})$.

By dominated convergence theorem, we obtain

$$\int_{D} \mathbb{E}(WX|\mathcal{G})d\mathbb{P} = \int_{D} WXd\mathbb{P} = \lim_{n \to \infty} \int_{D} \phi_n Xd\mathbb{P} = \lim_{n \to \infty} \int_{D} \phi_n \mathbb{E}(X|\mathcal{G})d\mathbb{P} = \int_{D} W\mathbb{E}(X|\mathcal{G})d\mathbb{P},$$

implying $\mathbb{E}(WX|\mathcal{G}) = W\mathbb{E}(X|\mathcal{G})$ a.s., as desired.

Now we are ready to prove **Proposition 3**.

Proof of **Proposition 3**. First, we know that for all $t \in \mathbb{R}_+$, $S_t \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ as

$$\mathbb{E}(S_t) = S_0 e^{\mu t} \mathbb{E}(e^{\sigma B_t}) = S_0 e^{\mu t + \frac{1}{2}\sigma^2 t} < \infty.$$

(For the last equality, we make use of the moment generating function of a Gaussian random variable.)

For all $t, s \in \mathbb{R}_+$ such that $t \geq s$,

$$\mathbb{E}(S_t|\mathcal{F}_s) = S_0 e^{\mu t} \mathbb{E}(e^{\sigma(B_s + B_t - B_s)}|\mathcal{F}_s)$$

= $S_0 e^{\mu t + \sigma B_s} \mathbb{E}(e^{\sigma(B_t - B_s)}|\mathcal{F}_s)$ (by Lemma 4)
= $S_0 e^{\mu t + \sigma B_s} \mathbb{E}(e^{\sigma(B_t - B_s)})$
= $S_0 e^{\sigma B_s + \mu s + \mu(t - s) + \frac{\sigma^2}{2}(t - s)}$
= $S_s e^{(\mu + \frac{\sigma^2}{2})(t - s)}$

Therefore, we see that

for all
$$t \ge s$$
, $\mathbb{E}(S_t | \mathcal{F}_s) = S_s \iff \mu + \frac{\sigma^2}{2} = 0 \iff \mu = -\frac{\sigma^2}{2}$

as desired.

Proposition 5. Let $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (B_t)_{t \in \mathbb{R}_+})$ be the standard 1-dimensional Brownian motion. The process defined by $X_t := B_t^2$ is a submartingale, and the process defined by $Y_t := B_t^2 - t$ is a martingale.

Proof. We know $X_t, Y_t \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ from our proof of **Proposition** 2.

For all $t, s \in \mathbb{R}_+$ such that $t \ge s$, from Jensen's inequality, we see that

$$\mathbb{E}(X_t|\mathcal{F}_s) = \mathbb{E}(B_t^2|\mathcal{F}_s) \ge \mathbb{E}(B_t|\mathcal{F}_s)^2 = B_s^2 = X_s^2,$$

implying the process $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (X_t)_{t \in \mathbb{R}_+})$ is a submartingale. For all $t, s \in \mathbb{R}_+$ such that $t \ge s$,

$$\mathbb{E}(Y_t | \mathcal{F}_s) = \mathbb{E}(B_t^2 - t | \mathcal{F}_s)$$
$$= \mathbb{E}((B_s + B_t - B_s)^2 | \mathcal{F}_s) - t$$

$$= \mathbb{E}(B_s^2 | \mathcal{F}_s) + 2\mathbb{E}(B_s(B_t - B_s) | \mathcal{F}_s) + \mathbb{E}((B_t - B_s)^2 | \mathcal{F}_s) - t$$

= $B_s^2 + 2B_s \mathbb{E}(B_t - B_s) + \mathbb{E}((B_t - B_s)^2) - t$ (by Lemma 4)
= $B_s^2 + t - s - t$
= $B_s^2 - s$
= Y_s .

Therefore, $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{R}_+}, (Y_t)_{t \in \mathbb{R}_+})$ is a martingale, as desired.