## BROWNIAN MARTINGALES

## SML INTRODUCTION TO STOCHASTIC CALCULUS

LI GUOMING

In this report, we shall give some fundamental examples of martingales related to Brownian motions. Let us first recall the definition of martingales, supermartingales and submartingales:

Definition 1 (martingale, supermartingale, submartingale). For $\mathcal{T} \subset \mathbb{R}_{+}$, a real value stochastic process $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathcal{T}},\left(M_{t}\right)_{t \in \mathcal{T}}\right)$ satisfying $M_{t} \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ for any $t \in \mathcal{T}$ is a martingale if $\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right)=M_{s}$ for all $s \leq t$. It is a supermartingale if $\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right) \leq M_{s}$ or a submartingale if $\mathbb{E}\left(M_{t} \mid \mathcal{F}_{s}\right) \geq M_{s}$.
We intend to prove several statements by following the above definition.
Proposition 2. The standard 1-dimensional Brownian motion is a martingale.
Proof. Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}\right)_{t \in \mathbb{R}_{+}}\right)$be the standard 1-dimensional Brownian motion. We see that for all $t \in \mathbb{R}_{+}, B_{t} \in L^{2}(\Omega, \mathcal{F}, \mathbb{P}) \subset L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ as

$$
\mathbb{E}\left(B_{t}^{2}\right)=\operatorname{Var}\left(B_{t}\right)+\mathbb{E}\left(B_{t}\right)^{2}=t<\infty
$$

Now note that for all $t, s \in \mathbb{R}_{+}$such that $t \geq s$,

$$
\begin{aligned}
\mathbb{E}\left(B_{t} \mid \mathcal{F}_{s}\right) & =\mathbb{E}\left(B_{s}+B_{t}-B_{s} \mid \mathcal{F}_{s}\right) \\
& =\mathbb{E}\left(B_{s} \mid \mathcal{F}_{s}\right)+\mathbb{E}\left(B_{t}-B_{s} \mid \mathcal{F}_{s}\right) \\
& =B_{s}+\mathbb{E}\left(B_{t}-B_{s}\right) \\
& =B_{s}
\end{aligned}
$$

which implies that $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}\right)_{t \in \mathbb{R}_{+}}\right)$is a martingale.
Proposition 3. Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}\right)_{t \in \mathbb{R}_{+}}\right)$be the standard 1-dimensional Brownian motion. Let the geometric Brownian motion be defined by $S_{t}:=S_{0} \exp \left(\sigma B_{t}+\mu t\right)$, with $\sigma>0, \mu \in \mathbb{R}$, and $S_{0} \in \mathbb{R}$ an arbitrary initial value. Then this process is a martingale if and only if $\mu=-\frac{1}{2} \sigma^{2}$.

To prove this statement, we shall make use of the lemma given below, which is a slightly stronger result compared with Proposition 3.1.3 4. given in the lecture notes.

Lemma 4. Let $X$ be a random variable on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a standard measurable space $(\Lambda, \mathcal{E})$ and further assume that $X \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$. Let $\mathcal{G}$ be a $\sigma$-subalgebra of $\mathcal{F}$. If $W$ is an univariate $\mathcal{G}$-measurable random variable such that $W X \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$, then $\mathbb{E}(W X \mid \mathcal{G})=W \mathbb{E}(X \mid \mathcal{G})$ a.s..
Proof. We may assume $W$ is nonnegative, otherwise, we may write $W=W_{+}-W_{-}$and apply linearity, where $W_{+}=\max \{W, 0\}, W_{-}=\max \{-W, 0\}$. Then there exists a sequence $\left\{\phi_{n}\right\}$ of increasing nonnegative simple functions converging to $W$ pointwise. Then for all $n \in \mathbb{N}$, we know that $\phi_{n} X \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$.
For the case in which $X$ is nonnegative, for any $D \in \mathcal{G}$, by the monotone convergence theorem, we have

$$
\int_{D} \mathbb{E}(W X \mid \mathcal{G}) d \mathbb{P}=\int_{D} W X d \mathbb{P}=\lim _{n \rightarrow \infty} \int_{D} \phi_{n} X d \mathbb{P}=\lim _{n \rightarrow \infty} \int_{D} \phi_{n} \mathbb{E}(X \mid \mathcal{G}) d \mathbb{P}=\int_{D} W \mathbb{E}(X \mid \mathcal{G}) d \mathbb{P}
$$

implying $\mathbb{E}(W X \mid \mathcal{G})=W \mathbb{E}(X \mid \mathcal{G})$ a.s., where the third equality comes from the fact that $\phi_{n}$ is a simple function.
For the general case in which $X$ is not always nonnegative, from Jensen's inequality, we have

$$
\mathbb{E}(|X| \mid \mathcal{G}) \geq|\mathbb{E}(X \mid \mathcal{G})|
$$

Hence

$$
\left|\phi_{n} \mathbb{E}(X \mid \mathcal{G})\right| \leq \phi_{n} \mathbb{E}(|X| \mid \mathcal{G}) \leq W \mathbb{E}(|X| \mid \mathcal{G})
$$

From our previous result, we know that $\mathbb{E}(W|X| \mid \mathcal{G})=W \mathbb{E}(|X| \mid \mathcal{G})$ a.s., thus $W \mathbb{E}(|X| \mid \mathcal{G}) \in$ $L^{1}(\Omega, \mathcal{G}, \mathbb{P})$.
By dominated convergence theorem, we obtain

$$
\int_{D} \mathbb{E}(W X \mid \mathcal{G}) d \mathbb{P}=\int_{D} W X d \mathbb{P}=\lim _{n \rightarrow \infty} \int_{D} \phi_{n} X d \mathbb{P}=\lim _{n \rightarrow \infty} \int_{D} \phi_{n} \mathbb{E}(X \mid \mathcal{G}) d \mathbb{P}=\int_{D} W \mathbb{E}(X \mid \mathcal{G}) d \mathbb{P}
$$

implying $\mathbb{E}(W X \mid \mathcal{G})=W \mathbb{E}(X \mid \mathcal{G})$ a.s., as desired.

Now we are ready to prove Proposition 3.
Proof of Proposition 3. First, we know that for all $t \in \mathbb{R}_{+}, S_{t} \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ as

$$
\mathbb{E}\left(S_{t}\right)=S_{0} e^{\mu t} \mathbb{E}\left(e^{\sigma B_{t}}\right)=S_{0} e^{\mu t+\frac{1}{2} \sigma^{2} t}<\infty
$$

(For the last equality, we make use of the moment generating function of a Gaussian random variable.)

For all $t, s \in \mathbb{R}_{+}$such that $t \geq s$,

$$
\begin{aligned}
\mathbb{E}\left(S_{t} \mid \mathcal{F}_{s}\right) & =S_{0} e^{\mu t} \mathbb{E}\left(e^{\sigma\left(B_{s}+B_{t}-B_{s}\right)} \mid \mathcal{F}_{s}\right) \\
& =S_{0} e^{\mu t+\sigma B_{s}} \mathbb{E}\left(e^{\sigma\left(B_{t}-B_{s}\right)} \mid \mathcal{F}_{s}\right) \quad \text { (by Lemma 4) } \\
& =S_{0} e^{\mu t+\sigma B_{s}} \mathbb{E}\left(e^{\sigma\left(B_{t}-B_{s}\right)}\right) \\
& =S_{0} e^{\sigma B_{s}+\mu s+\mu(t-s)+\frac{\sigma^{2}}{2}(t-s)} \\
& =S_{s} e^{\left(\mu+\frac{\sigma^{2}}{2}\right)(t-s)}
\end{aligned}
$$

Therefore, we see that

$$
\text { for all } t \geq s, \mathbb{E}\left(S_{t} \mid \mathcal{F}_{s}\right)=S_{s} \Longleftrightarrow \mu+\frac{\sigma^{2}}{2}=0 \Longleftrightarrow \mu=-\frac{\sigma^{2}}{2}
$$

as desired.
Proposition 5. Let $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(B_{t}\right)_{t \in \mathbb{R}_{+}}\right)$be the standard 1-dimensional Brownian motion. The process defined by $X_{t}:=B_{t}^{2}$ is a submartingale, and the process defined by $Y_{t}:=B_{t}^{2}-t$ is a martingale.

Proof. We know $X_{t}, Y_{t} \in L^{1}(\Omega, \mathcal{F}, \mathbb{P})$ from our proof of Proposition 2.
For all $t, s \in \mathbb{R}_{+}$such that $t \geq s$, from Jensen's inequality, we see that

$$
\mathbb{E}\left(X_{t} \mid \mathcal{F}_{s}\right)=\mathbb{E}\left(B_{t}^{2} \mid \mathcal{F}_{s}\right) \geq \mathbb{E}\left(B_{t} \mid \mathcal{F}_{s}\right)^{2}=B_{s}^{2}=X_{s}^{2}
$$

implying the process $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(X_{t}\right)_{t \in \mathbb{R}_{+}}\right)$is a submartingale.
For all $t, s \in \mathbb{R}_{+}$such that $t \geq s$,

$$
\begin{aligned}
\mathbb{E}\left(Y_{t} \mid \mathcal{F}_{s}\right) & =\mathbb{E}\left(B_{t}^{2}-t \mid \mathcal{F}_{s}\right) \\
& =\mathbb{E}\left(\left(B_{s}+B_{t}-B_{s}\right)^{2} \mid \mathcal{F}_{s}\right)-t \\
& =\mathbb{E}\left(B_{s}^{2} \mid \mathcal{F}_{s}\right)+2 \mathbb{E}\left(B_{s}\left(B_{t}-B_{s}\right) \mid \mathcal{F}_{s}\right)+\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2} \mid \mathcal{F}_{s}\right)-t \\
& =B_{s}^{2}+2 B_{s} \mathbb{E}\left(B_{t}-B_{s}\right)+\mathbb{E}\left(\left(B_{t}-B_{s}\right)^{2}\right)-t \quad(\text { by Lemma } 4) \\
& =B_{s}^{2}+t-s-t \\
& =B_{s}^{2}-s \\
& =Y_{s} .
\end{aligned}
$$

Therefore, $\left(\Omega, \mathcal{F}, \mathbb{P},\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}},\left(Y_{t}\right)_{t \in \mathbb{R}_{+}}\right)$is a martingale, as desired.

