On Feynman-Kac formula with terminal value

FIRDAUS Rafi Rizqy (062101889), NGO Gia Linh (042001463)

Special Mathematics Lecture: Introduction to Stochastic Calculus (Fall 2023)

Langevin-Type SDE ([2], pg. 132)

Let X_{t} satisfy the stochastic differential equation (SDE)

$$
\begin{equation*}
\mathrm{d} X_{t}=a_{t} X_{t} \mathrm{~d} t+\mathrm{d} B_{t} \tag{5.32}
\end{equation*}
$$

where a_{t} is a given adapted and continuous process. When $a_{t}=-\alpha$, the equation is the Langevin equation.

We solve the SDE in two ways: by using the general solution ([3], Eq. 5.2.7, pg. 47), and directly, similarly to Langevin's SDE.

1. Clearly, $\beta_{t}=a_{t}, \gamma_{t}=1$, and $\alpha_{t}=\delta_{t}=0$. In order to find U_{t} we must solve $\mathrm{d} U_{t}=a_{t} U_{t} \mathrm{~d} t$, which gives $U_{t}=e^{\int_{0}^{t} a_{s} \mathrm{~d} s}$. Thus from ([3], Eq. 5.2.7, pg. 47)

$$
X_{t}=e^{\int_{0}^{t} a_{s} \mathrm{~d} s}\left(X_{0}+\int_{0}^{t} e^{-\int_{0}^{u} a_{s} \mathrm{~d} s} \mathrm{~d} B_{u}\right) .
$$

2. Consider the process $e^{-\int_{0}^{t} a_{s} \mathrm{~d} s} X_{t}$ and use integration by parts. The process $e^{-\int_{0}^{t} a_{s} \mathrm{~d} s}$ is continuous and is of finite variation. Therefore, it has zero covariation with X_{t}, hence

$$
\mathrm{d}\left(e^{-\int_{0}^{t} a_{s} \mathrm{~d} s} X_{t}\right)=e^{-\int_{0}^{t} a_{s} \mathrm{~d} s} \mathrm{~d} X_{t}-a_{t} e^{-\int_{0}^{t} a_{s} \mathrm{~d} s} X_{t} \mathrm{~d} t=e^{-\int_{0}^{t} a_{s} \mathrm{~d} s} \mathrm{~d} B_{t}
$$

Integrating, we obtain

$$
e^{-\int_{0}^{t} a_{s} \mathrm{~d} s} X_{t}=X_{0}+\int_{0}^{t} e^{-\int_{0}^{u} a_{s} \mathrm{~d} s} \mathrm{~d} B_{u}
$$

and finally,

$$
X_{t}=X_{0} e^{t_{0}^{t} a_{s} \mathrm{~d} s}+e^{\int_{0}^{t} a_{s} \mathrm{~d} s}\left(\int_{0}^{t} e^{-\int_{0}^{u} a_{s} \mathrm{~d} s} \mathrm{~d} B_{u}\right) .
$$

Theorem 1 (Feynman-Kac formula with terminal value ([3], pg. 57)). Consider an Itô process satisfying the differential stochastic equation

$$
\begin{equation*}
\mathrm{d} X_{t}=\sigma\left(t, X_{t}\right) \mathrm{d} B_{t}+\mu\left(t, X_{t}\right) \mathrm{d} t \tag{2}
\end{equation*}
$$

and let $r:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be measurable and bounded functions. Assume that $f:[0, T] \times \mathbb{R} \rightarrow \mathbb{R}$ is a solution of the equation

$$
\begin{equation*}
\left[\partial_{t} f\right](t, x)+\left[L_{t} f\right](t, x)=r(t, x) f(t, x), \quad f(T, y)=g(y) . \tag{3}
\end{equation*}
$$

Then, f is unique and satisfies the relation

$$
f(t, y)=\mathbb{E}\left[\exp \left(-\int_{t}^{T} r\left(u, X_{u}\right) \mathrm{d} u\right) g\left(X_{T}\right) \mid X_{t}=y\right] .
$$

Proof. Before proving the theorem, consider the differential form of Itô's formula for the given Itô process (2) ([3], Proposition 5.1.4 pg. 43)

$$
\mathrm{d} f\left(t, X_{t}\right)=\left(\left[\partial_{t} f\right]\left(t, X_{t}\right)+\frac{1}{2} \sigma^{2}\left(t, X_{t}\right)\left[\partial_{x}^{2} f\right]\left(t, X_{t}\right)\right) \mathrm{d} t+\left[\partial_{x} f\right]\left(t, X_{t}\right) \mathrm{d} X_{t} .
$$

Then we define a second-order differential equation for the given Itô process (2), $L_{t}:=\frac{1}{2} \sigma^{2}(t, x) \partial_{x}^{2}+$ $\mu(t, x) \partial_{x}$. Therefore, one can rewrite the equation above into

$$
\begin{aligned}
\mathrm{d} f\left(t, X_{t}\right) & =\left(\left[\partial_{t} f\right]\left(t, X_{t}\right)+\frac{1}{2} \sigma^{2}\left(t, X_{t}\right)\left[\partial_{x}^{2} f\right]\left(t, X_{t}\right)\right) \mathrm{d} t+\left[\partial_{x} f\right]\left(t, X_{t}\right)\left(\sigma\left(t, X_{t}\right) \mathrm{d} B_{t}+\mu\left(t, X_{t}\right) \mathrm{d} t\right) \\
& =\left(\left[\partial_{t} f\right]\left(t, X_{t}\right)+\left[L_{t} f\right]\left(t, X_{t}\right)\right) \mathrm{d} t+\sigma\left(t, X_{t}\right)\left[\partial_{x} f\right]\left(t, X_{t}\right) \mathrm{d} B_{t}
\end{aligned}
$$

We give a sketch of the proof by using Itô's formula coupled with solutions of a linear stochastic differential equation (SDE). Take a solution to (3) and apply Itô's formula:

$$
\mathrm{d} f\left(t, X_{t}\right)=\left(\left[\partial_{t} f\right]\left(t, X_{t}\right)+\left[L_{t} f\right]\left(t, X_{t}\right)\right) \mathrm{d} t+\left[\partial_{x} f\right]\left(t, X_{t}\right) \sigma\left(t, X_{t}\right) \mathrm{d} B_{t} .
$$

The last term is a martingale term, so write it as $\mathrm{d} M_{t}$. Now use (3) to obtain

$$
\mathrm{d} f\left(t, X_{t}\right)=r\left(t, X_{t}\right) f\left(t, X_{t}\right) \mathrm{d} t+\mathrm{d} M_{t} .
$$

This is a linear SDE of Langevin type for $f\left(t, X_{t}\right)$ where B_{t} is replaced by M_{t}. Integrating this SDE between t and T, we obtain

$$
f\left(T, X_{T}\right)=f\left(t, X_{t}\right) e^{\int_{t}^{T} r\left(u, X_{u}\right) \mathrm{d} u}+e^{\int_{t}^{T} r\left(u, X_{u}\right) \mathrm{d} u} \int_{t}^{T} e^{\int_{t}^{s} r\left(u, X_{u}\right) \mathrm{d} u} \mathrm{~d} M_{s} .
$$

However, we know that $f\left(T, X_{T}\right)=g\left(X_{T}\right)$, and rearranging the equation above, we obtain

$$
g\left(X_{T}\right) e^{-\int_{t}^{T} r\left(u, X_{u}\right) \mathrm{d} u}=f\left(t, X_{t}\right)+\int_{t}^{T} e^{\int_{t}^{s} r\left(u, X_{u}\right) \mathrm{d} u} \mathrm{~d} M_{s} .
$$

As mentioned in ([3], Theorem 4.3.1, pg. 37), the last term on the r.h.s. is an integral of a bounded function with respect to the martingale which defines a mean zero and continuous martingale map ${ }^{1}$. Taking the expectation given $X_{t}=y$, we obtain $f(t, y)$.

[^0]Exercise 6.3.6 ([3], pg. 57)
Give a probabilistic representation of the solution of the equation

$$
\partial_{t} f+\frac{1}{2} \sigma^{2} x^{2} \partial_{x}^{2} f+\mu x \partial_{x} f=r f, \quad f(T, y)=y^{2}
$$

for $r, \sigma, \mu>0$.
In this equation, $L_{t}=\frac{1}{2} \sigma^{2} x^{2} \partial_{x}^{2} f+\mu x \partial_{x} f$, which is the infinitesimal generator of the geometric Brownian motion given by the SDE

$$
\mathrm{d} X_{t}=\sigma X_{t} \mathrm{~d} B_{t}+\mu X_{t} \mathrm{~d} t
$$

The solution to this equation is ([1], pg. 1)

$$
X_{t}=X_{0} e^{\left(\mu-\sigma^{2} / 2\right) t+\sigma B_{t}} .
$$

By the Feynman-Kac formula

$$
f(t, y)=\mathbb{E}\left[e^{-r(T-t)} X_{T}^{2} \mid X_{t}=y\right]=e^{-r(T-t)} \mathbb{E}\left[X_{T}^{2} \mid X_{t}=y\right] .
$$

Using $X_{T}=X_{t} e^{\left(\mu-\sigma^{2} / 2\right)(T-t)+\sigma\left(B_{T}-B_{t}\right)}$, we obtain

$$
\begin{aligned}
f(t, y) & =e^{-r(T-t)} \mathbb{E}\left[X_{T}^{2} \mid X_{t}=y\right] \\
& =e^{-r(T-t)} y^{2} e^{2\left[\left(\mu-\sigma^{2} / 2\right)(T-t)+\sigma\left(B_{T}-B_{t}\right)\right]} \\
& =y^{2} e^{\left(2 \mu+\sigma^{2}-r\right)(T-t)} .
\end{aligned}
$$

Exercise 6.10 ([2], pg. 184)
Give a probabilistic representation of the solution $f(x, t)$ of the Partial Differential Equation (PDE)

$$
\frac{1}{2} \partial_{x}^{2} f+\partial_{t} f=0, \quad 0 \leq t \leq T, \quad f(x, T)=x^{2} .
$$

Solve this PDE using the solution of the corresponding stochastic differential equation.
To solve the given exercise, we first identify the SDE that corresponds to the PDE. For a PDE of the form

$$
\frac{1}{2} \partial_{x}^{2} f+\partial_{t} f=0
$$

the corresponding SDE for a standard Brownian motion is

$$
\mathrm{d} X_{t}=\mathrm{d} B_{t}
$$

Applying the Feynman-Kac formula, we represent the solution to the PDE as the expected value of the terminal condition, leading to

$$
f(t, x)=\mathbb{E}\left[X_{T}^{2} \mid X_{t}=x\right] .
$$

Given that $X_{T}-X_{t}=B_{T}-B_{t} \Longrightarrow X_{T}=x+\left(B_{T}-B_{t}\right)$ and using the properties of Brownian motion, we compute

$$
f(t, x)=\mathbb{E}\left[\left(x+B_{T}-B_{t}\right)^{2}\right]=x^{2}+\mathbb{E}\left[\left(B_{T}-B_{t}\right)^{2}\right] .
$$

Since $B_{T}-B_{t}$ is normally distributed with mean 0 and variance $T-t$, we find

$$
f(t, x)=x^{2}+(T-t)
$$

Thus, the probabilistic representation of the solution to the PDE is

$$
f(t, x)=x^{2}+(T-t)
$$

which concludes the solution to this exercise.

References

[1] Rafi R Firdaus and Ngo Gia Linh. On black-scholes equation. link.
[2] Fima C Klebaner. Introduction to stochastic calculus with applications. World Scientific Publishing Company, 2012.
[3] Serge Richard. Special Mathematics Lecture: Introduction to Stochastic Calculus. 2023.

[^0]: ${ }^{1}$ For the proof that $\sigma\left(t, X_{t}\right)\left[\partial_{x} f\right]\left(t, X_{t}\right)$ belongs to $M^{2}([0, T])$, refer to [2], Theorem 6.2, pg. 152. The main idea of the proof is to utilize the fact that $\partial_{x} f(t, x)$ is bounded for all t and x.

