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Langevin-Type SDE ([2], pg. 132)

Let Xt satisfy the stochastic differential equation (SDE)

dXt = atXtdt+ dBt, (5.32) (1)

where at is a given adapted and continuous process. When at = −α, the equation is the Langevin

equation.

We solve the SDE in two ways: by using the general solution ([3], Eq. 5.2.7, pg. 47), and directly,

similarly to Langevin’s SDE.

1. Clearly, βt = at, γt = 1, and αt = δt = 0. In order to find Ut we must solve dUt = atUtdt, which

gives Ut = e
∫ t
0 asds. Thus from ([3], Eq. 5.2.7, pg. 47)

Xt = e
∫ t
0 asds

(
X0 +

∫ t

0
e−

∫ u
0 asdsdBu

)
.

2. Consider the process e−
∫ t
0 asdsXt and use integration by parts. The process e−

∫ t
0 asds is contin-

uous and is of finite variation. Therefore, it has zero covariation with Xt, hence

d
(
e−

∫ t
0 asdsXt

)
= e−

∫ t
0 asdsdXt − ate

−
∫ t
0 asdsXtdt = e−

∫ t
0 asdsdBt.

Integrating, we obtain

e−
∫ t
0 asdsXt = X0 +

∫ t

0
e−

∫ u
0 asdsdBu,

and finally,

Xt = X0e
∫ t
0 asds + e

∫ t
0 asds

(∫ t

0
e−

∫ u
0 asdsdBu

)
.

Theorem 1 (Feynman-Kac formula with terminal value ([3], pg. 57)). Consider an Itô process

satisfying the differential stochastic equation

dXt = σ(t,Xt) dBt + µ(t,Xt) dt, (2)
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and let r : [0, T ] × R → R and g : R → R be measurable and bounded functions. Assume that

f : [0, T ]× R → R is a solution of the equation

[∂tf ](t, x) + [Ltf ](t, x) = r(t, x)f(t, x), f(T, y) = g(y). (3)

Then, f is unique and satisfies the relation

f(t, y) = E
[
exp

(
−
∫ T

t
r(u,Xu) du

)
g(XT )

∣∣∣∣Xt = y

]
.

Proof. Before proving the theorem, consider the differential form of Itô’s formula for the given Itô

process (2) ([3], Proposition 5.1.4 pg. 43)

df(t,Xt) =

(
[∂tf ](t,Xt) +

1

2
σ2(t,Xt)[∂

2
xf ](t,Xt)

)
dt+ [∂xf ](t,Xt) dXt.

Then we define a second-order differential equation for the given Itô process (2), Lt :=
1
2σ

2(t, x)∂2
x +

µ(t, x)∂x. Therefore, one can rewrite the equation above into

df(t,Xt) =

(
[∂tf ](t,Xt) +

1

2
σ2(t,Xt)[∂

2
xf ](t,Xt)

)
dt+ [∂xf ](t,Xt)(σ(t,Xt) dBt + µ(t,Xt) dt)

=
(
[∂tf ](t,Xt) + [Ltf ](t,Xt)

)
dt+ σ(t,Xt)[∂xf ](t,Xt) dBt.

We give a sketch of the proof by using Itô’s formula coupled with solutions of a linear stochastic

differential equation (SDE). Take a solution to (3) and apply Itô’s formula:

df(t,Xt) =
(
[∂tf ](t,Xt) + [Ltf ](t,Xt)

)
dt+ [∂xf ](t,Xt)σ(t,Xt) dBt.

The last term is a martingale term, so write it as dMt. Now use (3) to obtain

df(t,Xt) = r(t,Xt)f(t,Xt) dt+ dMt.

This is a linear SDE of Langevin type for f(t,Xt) where Bt is replaced by Mt. Integrating this SDE

between t and T , we obtain

f(T,XT ) = f(t,Xt)e
∫ T
t r(u,Xu) du + e

∫ T
t r(u,Xu) du

∫ T

t
e
∫ s
t r(u,Xu) du dMs.

However, we know that f(T,XT ) = g(XT ), and rearranging the equation above, we obtain

g(XT )e
−

∫ T
t r(u,Xu) du = f(t,Xt) +

∫ T

t
e
∫ s
t r(u,Xu) du dMs.

As mentioned in ([3], Theorem 4.3.1, pg. 37), the last term on the r.h.s. is an integral of a bounded

function with respect to the martingale which defines a mean zero and continuous martingale map1.

Taking the expectation given Xt = y, we obtain f(t, y).
1For the proof that σ(t,Xt)[∂xf ](t,Xt) belongs to M2([0, T ]), refer to [2], Theorem 6.2, pg. 152. The main idea of

the proof is to utilize the fact that ∂xf(t, x) is bounded for all t and x.
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Exercise 6.3.6 ([3], pg. 57)

Give a probabilistic representation of the solution of the equation

∂tf +
1

2
σ2x2∂2

xf + µx∂xf = rf, f(T, y) = y2,

for r, σ, µ > 0.

In this equation, Lt = 1
2σ

2x2∂2
xf + µx∂xf , which is the infinitesimal generator of the geometric

Brownian motion given by the SDE

dXt = σXt dBt + µXt dt.

The solution to this equation is ([1], pg. 1)

Xt = X0e
(µ−σ2/2)t+σBt .

By the Feynman-Kac formula

f(t, y) = E
[
e−r(T−t)X2

T

∣∣∣Xt = y
]
= e−r(T−t)E

[
X2

T

∣∣∣Xt = y
]
.

Using XT = Xte
(µ−σ2/2)(T−t)+σ(BT−Bt), we obtain

f(t, y) = e−r(T−t)E
[
X2

T

∣∣∣Xt = y
]

= e−r(T−t)y2e2[(µ−σ2/2)(T−t)+σ(BT−Bt)]

= y2e(2µ+σ2−r)(T−t).

Exercise 6.10 ([2], pg. 184)

Give a probabilistic representation of the solution f(x, t) of the Partial Differential Equation (PDE)

1

2
∂2
xf + ∂tf = 0, 0 ≤ t ≤ T, f(x, T ) = x2.

Solve this PDE using the solution of the corresponding stochastic differential equation.

To solve the given exercise, we first identify the SDE that corresponds to the PDE. For a PDE of the

form
1

2
∂2
xf + ∂tf = 0,

the corresponding SDE for a standard Brownian motion is

dXt = dBt,

Applying the Feynman-Kac formula, we represent the solution to the PDE as the expected value of

the terminal condition, leading to

f(t, x) = E
[
X2

T

∣∣Xt = x
]
.
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Given that XT − Xt = BT − Bt =⇒ XT = x + (BT − Bt) and using the properties of Brownian

motion, we compute

f(t, x) = E
[
(x+BT −Bt)

2
]
= x2 + E[(BT −Bt)

2].

Since BT −Bt is normally distributed with mean 0 and variance T − t, we find

f(t, x) = x2 + (T − t).

Thus, the probabilistic representation of the solution to the PDE is

f(t, x) = x2 + (T − t),

which concludes the solution to this exercise.
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