On Black-Scholes Equation

FIRDAUS Rafi Rizqy (062101889), NGO Gia Linh (042001463)

Special Mathematics Lecture: Introduction to Stochastic Calculus (Fall 2023)

Exercise 5.2.2.

Let X be an Itô process satisfying

$$
\mathrm{d} X_{t}=r X_{t} \mathrm{~d} t+\sigma X_{t} \mathrm{~d} B_{t}, \quad X(0)=1
$$

Take $f(t, x)=\ln x$, then $\left[\partial_{t} f\right](t, x)=0,\left[\partial_{x} f\right](t, x)=\frac{1}{x},\left[\partial_{x}^{2} f\right](t, x)=-\frac{1}{x^{2}}, f\left(0, X_{0}\right)=\ln 1=0$. By Proposition 5.1.4 (Itô's lemma for Itô process)

$$
f\left(t, X_{t}\right)=f\left(0, X_{0}\right)+\int_{0}^{t} \frac{1}{X_{u}} \mathrm{~d} X_{u}+\int_{0}^{t}\left[0+\frac{1}{2} \sigma^{2} X_{u}^{2}\left(\frac{-1}{X_{u}^{2}}\right)\right] \mathrm{d} u
$$

From which one gets

$$
\begin{aligned}
\ln X_{t} & =0+\int_{0}^{t} \frac{1}{X_{u}} \mathrm{~d} X_{u}-\int_{0}^{t} \frac{1}{2} \sigma^{2} \mathrm{~d} u \\
& =\int_{0}^{t} \frac{1}{X_{u}}\left(r X_{u} \mathrm{~d} u+\sigma X_{u} \mathrm{~d} B_{u}\right)-\int_{0}^{t} \frac{1}{2} \sigma^{2} \mathrm{~d} u \\
& =\int_{0}^{t}\left(r-\frac{1}{2} \sigma^{2}\right) \mathrm{d} u+\int_{0}^{t} \sigma \mathrm{~d} B_{t} \\
& =\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}
\end{aligned}
$$

The solution for this equation is

$$
X_{t}=e^{\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma B_{t}}
$$

Then, for X an Itô process, we want to consider the following equation

$$
\mathrm{d} X_{t}=r_{t} X_{t} \mathrm{~d} t, \quad X(0)=1
$$

The solution for this equation is the same thing as what we did previously, with $\sigma=0$

$$
\begin{aligned}
\ln X_{t} & =\int_{0}^{t} r_{s} \mathrm{~d} s \\
\Longrightarrow X_{t} & =\exp \left(\int_{0}^{t} r_{s} \mathrm{~d} s\right) .
\end{aligned}
$$

Black-Scholes model

One of the simplest examples of a market model is given for $N=1$ and $n=1$ by the stochastic differential equation

$$
\begin{equation*}
\mathrm{d} S_{t}^{1}=\mu S_{t}^{1} \mathrm{~d} t+\sigma S_{t}^{1} \mathrm{~d} B_{t} \tag{1}
\end{equation*}
$$

with $\mu \in \mathbb{R}$ and $\sigma>0$. The constant μ is called the mean rate of return, and the constant σ is the volatility.

On the other hand, the stochastic process for S^{0} is given by

$$
\begin{equation*}
\mathrm{d} S_{t}^{0}=r_{t} S_{t}^{0} \mathrm{~d} t \tag{2}
\end{equation*}
$$

Note that the function r can also be deterministic, which is independent of the underlying probability space associated with the Brownian motion. The first equation corresponds to time-homogeneous diffusion processes, as introduced in Definition 5.1.2, while the second equation is a time-inhomogeneous diffusion process. The solutions of these equations are known: the first one has already been mentioned in Exercise 5.2.2 above and reads

$$
\begin{equation*}
S_{t}^{1}=S_{0}^{1} e^{\left(\mu-\sigma^{2} / 2\right) t+\sigma B_{t}} \tag{3}
\end{equation*}
$$

with S_{0}^{1} an initial condition independent of the Brownian motion, while

$$
\begin{equation*}
S_{t}^{0}=S_{0}^{0} \exp \left(\int_{0}^{t} r_{s} \mathrm{~d} s\right) \tag{4}
\end{equation*}
$$

In the special case of a constant parameter r, then the solution is simply $S_{t}^{0}=S_{0}^{0} e^{r t}$ for $t \in[0, T]$.

