Exercise 1 Compute the following limits:
a) $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$,
b) $\lim _{x \nearrow-1} \frac{x^{2}-x-2}{|x+1|}$
c) $\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x}$
d) $\lim _{x \rightarrow \infty} \frac{\left(\mathrm{e}^{x}-\mathrm{e}^{-x}\right)^{2}}{\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}}$.

Exercise 2 Compute the derivative of the following functions:

1. $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=\mathrm{e}^{\frac{1}{2} x} \sin (2 x)$,
2. $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=\sin ^{2}\left(x^{2}\right)$,
3. $h: \mathbb{R} \rightarrow \mathbb{R}, h(x)=\frac{x-1}{x^{2}+1}$.

Exercise 3 Determine the following limit: $\lim _{x \rightarrow 1} \frac{x \ln (x)-x+1}{x \ln (x)-\ln (x)}$.
Exercise 4 Prove the following statement: Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). If $f^{\prime}(x) \geq 0$ for any $x \in(a, b)$, then the function is increasing on $[a, b]$, and strictly increasing if $f^{\prime}(x)>0$.

Exercise 5 Consider the function $\tanh : \mathbb{R} \rightarrow \mathbb{R}$ given by $\tanh (x):=\frac{\sinh (x)}{\cosh (x)}=\frac{{\frac{e}{}=-e^{-x}}_{e^{x}+\mathrm{e}^{-x}} \text {. Determine the }{ }^{2} \text {. }}{}$ range of this function, and show that it is invertible on its range. Compute the derivative of its inverse.

Exercise 6 Consider the curve in \mathbb{R}^{2} defined by the relation $F(x, y)=0$ for

$$
F(x, y)=3 x^{3} y-y^{4}+5 x^{2}+5 .
$$

1. Show that the point $(1,2)$ belong to the curve, and find the slope of the tangent at the point $(1,2)$,
2. Show that the points $(0,-\sqrt[4]{5})$ and $(0, \sqrt[4]{5})$ belong to the curve and determine the equation of the tangent to the curve at these points.
3. For the 2 points $(0,-\sqrt[4]{5})$ and $(0, \sqrt[4]{5})$, indicate the position of the curve with respect to the tangent.

Exercise $14 p^{t s}$
a） $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}=\lim _{h \rightarrow 0} \frac{(1+h)-1}{h(\sqrt{1+h}+1)}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+h}+1}=\frac{1}{2}$ ．
b） $\lim _{x \rightarrow-1} \frac{x^{2}-x-2}{|x+1|}=\lim _{x \rightarrow-1} \frac{(x+1)(x-2 \mid}{-(x+1)}=-(-1-2)=3$ ．
c） $\lim _{x \rightarrow 0} \frac{\sin ^{2}(x)}{x}=\lim _{x \rightarrow 0} \frac{\sin (x)}{x} \sin (x)=1 \cdot 0=0$ ．
d） $\lim _{x \rightarrow \infty} \frac{\left(e^{x}+e^{-x}\right)^{2}}{e^{2 x}+e^{-2 x}}=\lim _{x \rightarrow \infty} \frac{e^{2 x}+2+e^{-2 x}}{e^{2 x}+e^{-2 x}}$

$$
=\lim _{x \rightarrow \infty} \frac{e^{2 x}\left(1+2 e^{-2 x}+e^{-4 x}\right)}{e^{2 x}\left(1+e^{-4 x}\right)}=1 .
$$

Exercise 2 Guts
1．$\quad f^{\prime}(x)=\frac{1}{2} e^{\frac{1}{2} x} \sin (2 x)+e^{\frac{1}{2} x} \cos (2 x) 2$

$$
=e^{\frac{1}{2} x}\left(\frac{1}{2} \sin (2 x)+2 \cos (2 x)\right)
$$

2．$g^{\prime}(x)=2 \sin \left(x^{2}\right) \cos \left(x^{2}\right) \quad 2 x=4 x \sin \left(x^{2}\right) \cos \left(x^{2}\right)$ ．
3．$h^{\prime}(x)=\frac{x^{2}+1-2 x(x-1)}{\left(x^{2}+1\right)^{2}}=\frac{-x^{2}+2 x+1}{\left(x^{2}+1\right)^{2}}$ ．

Exercise $3 \quad 3$ p
All condition for plying L'Horpital's rule are satisfied (since $\ln (1)=0)$, then one has

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x \ln (x)-x+1}{x \ln (x)-\ln (x)} \stackrel{\text { Hòpritel }}{=} \lim _{x \rightarrow 1} \frac{\ln (x)+x \frac{1}{x c}-1}{\ln (x)+x \frac{1}{x}-\frac{1}{x}} \\
& =\lim _{x \rightarrow 1} \frac{\ln (x)}{\ln (x)+1-\frac{1}{x}}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^{2}}}=\underline{\frac{1}{2}},
\end{aligned}
$$

Exercise $43 p$
Choose any $\alpha, \beta \in[a, b]$ with $\alpha<\beta$. Then $f:[\alpha, \beta] \rightarrow \mathbb{R}$ (restriction of f on $[\alpha, \beta I)$ is continuous and differentiable on (α, β). We can only the mean value the: m $_{-1} \gamma \in(\alpha, \beta)$ sot.

$$
\frac{f(\beta)-f(\alpha)}{\beta-\alpha}=f^{\prime}(\beta) \Leftrightarrow f(\beta)=f(\alpha)+f^{\prime}(\beta) \frac{(\beta-\alpha)}{>0} .
$$

If $f^{\prime}(\gamma) \geqslant 0$, then $f(\beta) \geqslant f(\alpha)$. If $f^{\prime}(\gamma)>0$, then $f(\beta)>f(\alpha)$. Since α, β are arbitrary, f is increasing or strictly in creasing on $[a, b$.

Exercue $5 \quad 3,5$
One han $\lim _{x \rightarrow-\infty} \tanh (x)=\lim _{x \rightarrow-\infty} \frac{e^{-x}\left(e^{2 x}-1\right)}{e^{-x}\left(e^{2 x}+1\right)}=-1$ ， and $\lim _{x \rightarrow \infty} \tan h(x)=\lim _{x \rightarrow \infty} \frac{e^{x}\left(1-e^{-2 x}\right)}{e^{x}\left(1+e^{-2 x}\right)}=1$ ．
For the derivative of tank，one has

$$
\tanh ^{\prime}=\frac{\cosh ^{2}-\sinh ^{2}}{\cosh ^{2}} \stackrel{\otimes}{=} \frac{1}{\cosh ^{2}}>0 \text {. Thu, the }
$$

function is strictly increasing，witt range $(-1,1)$ ； \Rightarrow tanh has an inverse，defined on $(-1,1)$ ， denoted log arctanh．Observe from＊that $\tanh ^{\prime}(x)=1-\tanh ^{2}(x)$ ．Thu，for $y \in(-1,1)$ ：

$$
\begin{aligned}
\operatorname{arctanh}(y)^{\prime} & =\frac{1}{\tanh ^{\prime}(\operatorname{arctanh}(y))}=\frac{1}{1-\tanh (\operatorname{arctanh}(y))^{2}} \\
& =\frac{1}{1-y^{2}}
\end{aligned}
$$

1. $F(1,2)=3 \cdot 1 \cdot 2-16+5+5=0 \quad \Rightarrow(1,2)$ belongs 3 , \hbar
to the curve: Suppose Hat locally, one has $y=y(x)$ which satisfies $F(x, y(x))=0$ for x belonging to a small interval of \mathbb{R}.
Then $\quad \frac{d}{d x} F(x, y(x))=0$

$$
\begin{aligned}
& \Leftrightarrow 9 x^{2} y(x)+3 x^{3} y^{\prime}(x)-4 y^{3}(x) y^{\prime}(x)+10 x=0 \\
& \Leftrightarrow y^{\prime}(x)\left(3 x^{2}-4 y^{3}(x)\right)=-9 x^{2} y(x)-10 x
\end{aligned}
$$

$$
\Leftrightarrow y^{\prime}(x)=-\frac{x(9 x y(x)+10)}{3 x^{2}-4 y^{3}(x)}
$$

valid ar long as the denominate r
is not 0
For $x=1, y(1)=2$, gets

$$
y^{\prime}(1)=-\frac{18+10}{3-32}=\frac{28}{29}
$$

The slope of the tangent in $\frac{28}{29}$.
2. Clear lg $F(0, \pm \sqrt[4]{5})=-(\pm \sqrt[4]{5})^{4}+5=0$ $2 i^{t}$
$\Rightarrow(0, \pm \sqrt[4]{5})$ belong to the curve. 1
By evaluating \rightarrow at 0 , one firstly observe that the denominator in rot 0 $\left(30^{2}-4(\sqrt[4]{5})^{3} \neq 0\right)$, and then $y^{\prime}(0)=0$
\Rightarrow the tangent at $(0, \pm \sqrt[4]{5})$ are the horizontd liner paining through $(0, \pm \sqrt[4]{5})$. 1
3. We need to compute $y^{\prime \prime}$ and evolute it at $x=0$. However, since $g^{\prime}(0)=0$, all Terms with $y^{\prime}(0)$ can be directly disregarded.

$$
\begin{aligned}
& y^{\prime \prime}(0)=\frac{-1(3 \cdot 0 y(0)+10)\left(-4 y^{3}(0)\right)-0-0}{\left(-4 y^{3}(0)\right)^{2}} \\
&=\frac{40}{16} \frac{y^{3}(0)}{y^{6}(0)}=\frac{5}{2} \frac{1}{y(0)^{3}} 0 \quad y^{\prime \prime}(0)>0 \Rightarrow 0 \\
& \text { At }(0, \sqrt[4]{5}), y^{\text {banged }} \rightarrow 0 \\
& \text { at. }(0,-\sqrt[4]{5}), y^{\prime \prime}(0)<0 \Rightarrow \text { tangent }_{\text {T curve }_{5}}-\sqrt[4]{5}
\end{aligned}
$$

