Exercise 1 Compute the derivative of the following functions:
(i) $x \mapsto \frac{x^{2}-1}{x^{2}+1}$
(ii) $x \mapsto x \sin (1 / x)$
(iii) $x \mapsto \ln (\ln (\ln (x))), \quad x>\mathrm{e}$.

Exercise 2 Determine the following limit: $\lim _{x \rightarrow 1} \frac{x \ln (x)-x+1}{x \ln (x)-\ln (x)}$.
Exercise 3 Compute the following integrals:
(i) $\int_{1}^{2} \frac{1}{x(x+1)} \mathrm{d} x$
(ii) $\quad \int \ln (x) \mathrm{d} x$
(iii) $\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$.

Exercise 4 Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=\left\{\begin{array}{ll}\mathrm{e}^{-1 / x^{2}} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$.

1. Sketch this function,
2. Compute its Taylor polynomial $p_{2}\left(x, x_{0}\right)$ at $x_{0}$ for any $x_{0} \neq 0$,
3. Compute the polynomial $p_{2}(x, 0)$ by considering $\lim _{x_{0} \rightarrow 0} p_{2}\left(x, x_{0}\right)$, justify your computation,
4. What do you conclude about the Taylor expansion of $f$ at 0 ?

Exercise 5 Let $\alpha>0$ and set $f:[0,1] \ni x \mapsto \alpha x \in \mathbb{R}$. Consider the volume of revolution generated by the rotation of $\{(x, f(x)) \mid x \in[0,1]\}$ around the $x$-axis.

1. With Riemann sums, determine the volume $V_{\alpha}$ of this solid (this volume depends on $\alpha$ ), you can use that $\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}$.
2. Compute the lateral surface of this solid with the formula

$$
S_{\alpha}=2 \pi \int_{0}^{1} f(x) \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x
$$

3. Compute the ratio $V_{\alpha} / S_{\alpha}$ and represent this ratio as a function of $\alpha$. In particular compute the limit $\alpha \searrow 0$ and the limit $\alpha \nearrow \infty$.

Exercise 6 Consider the sequence $\left(a_{j}\right)_{j=1}^{\infty}$ with $a_{j}=\frac{1}{j(j+1)}$.

1. Is the corresponding series convergent, justify your answer,
2. Determine the radius of convergence $R$ of the corresponding power series $\sum_{j=1}^{\infty} a_{j} x^{j}$,
3. Determine if the two series $\sum_{j=1}^{\infty} a_{j} R^{j}$ and $\sum_{j=1}^{\infty} a_{j}(-R)^{j}$ converge, and if so what is the value of these series. The following equality can be used:

$$
\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j}=\ln (2) .
$$

Final Total 32p th
Exercise $16, t$

1) $\left(\frac{x^{2}-1}{x^{2}+1}\right)^{\prime}=\frac{2 x\left(x^{2}+1\right)-2 x\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}=\frac{4 x}{\left(x^{2}+1\right)^{2}}$
2) 

$$
\text { 22) } \begin{aligned}
(x \sin (1 / x))^{\prime} & =\sin (1 / x)+x \cos (1 / x)\left(-1 / x^{2}\right) \\
& =\frac{\sin (1 / x)-\frac{1}{x} \cos (1 / x)}{1} \\
\text { 2 3) } \ln (\ln (\ln (x)))^{\prime} & =\frac{1}{\ln (\ln (x))} \frac{1}{\ln (x)} \frac{1}{x} .
\end{aligned}
$$

Exercise 2 (see midterm) $3 p \hbar$
L'Hópital's rule can be aplied 2 times

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x \ln (x)-x+1}{x \ln (x)-\ln (x)}=\lim _{x \rightarrow 1} \frac{\ln (x)+1-1}{\ln (x)+1-1 / x} \\
& =\lim _{x \rightarrow 1} \frac{\ln (x)}{\ln (x)+1-1 / x}=\lim _{x \rightarrow 1} \frac{1 / x}{1 / x+1 / x^{2}}=\frac{1}{2} .
\end{aligned}
$$

Exercise $3 \quad 6 p t$
1)

$$
\begin{aligned}
& \int_{1}^{2} \frac{1}{x(x+1)} d x=\int_{1}^{2}\left(\frac{1}{x}-\frac{1}{x+1}\right) d x \\
& =\ln (2)-\ln (1)-(\ln (3)-\ln (2)) \\
& =2 \ln (2)-\ln (3)=\ln (4)-\ln (3)=\ln \left(\frac{4}{3}\right) .
\end{aligned}
$$

2) 

$$
\begin{aligned}
\int_{1 \cdot \ln (x)} & =x \ln (x)-\int x \frac{1}{x} d x \\
& =x \ln (x)-x=x(\ln (x)-1)
\end{aligned}
$$

3) $\int_{0}^{1} \sqrt{1-x^{2}} d x \quad \operatorname{set} \sin (t)=x$

$$
\begin{aligned}
& =\int_{0}^{\pi / 2} \sqrt{1-\sin ^{2}(t)} \cos (t) d t \quad \cos (t) d t=d x \\
& =\int_{0}^{\pi / 2} \cos ^{2}(t) d t=\int_{0}^{\pi / 2} \frac{1+\cos (2 t)}{2} d t \\
& =\frac{1}{2} \frac{\pi}{2}+\frac{1}{2} \int_{0}^{\pi / 2} \cos (2 t) d t=\frac{\pi}{4}+\left.\frac{1}{4} \sin (2 t)\right|_{0} ^{\pi / 2} \\
& =\frac{\pi}{4} .
\end{aligned}
$$

Exercise 4 pts $f(x)=e^{-1 / x^{2}} \quad, \quad x \in \mathbb{R}$
1）
 He function is even．

32）$f\left(x_{0}\right)=e^{-1 / x_{0}^{2}}$

$$
\begin{aligned}
& f^{\prime}(x)=e^{-x^{-2}}\left(+2 x^{-3}\right)=2 x^{-3} e^{-x^{-2}} \\
& \Rightarrow f^{\prime}\left(x_{0}\right)=2 x_{0}^{-3} e^{-x_{0}^{-2}} \\
& f^{\prime \prime}(x)=-6 x^{-4} e^{-x^{-2}}+4\left(x^{-3}\right)^{2} e^{-x^{-2}} \\
& \Rightarrow f^{\prime \prime}\left(x_{0}\right)=\left(-6 x_{0}^{-4}+4 x_{0}^{-6}\right) e^{-x_{0}^{-2}}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow P_{2}\left(x, x_{0}\right)=e^{-x_{0}^{-2}}\left(1+\frac{2}{x_{0}^{3}}\left(x-x_{0}\right)+\frac{1}{2}\left(-\frac{6}{x_{0}^{4}}+\frac{4}{x_{0}^{6}}\right)\left(x-x_{0}\right)^{2}\right) \\
=e^{e^{-x_{0}^{-2}}\left(1+\frac{2}{x_{0}^{3}}\left(x-x_{0}\right)+\left(-\frac{3}{x_{0}^{4}}+\frac{2}{x_{0}^{6}}\right)\left(x-x_{0}\right)^{2}\right)} .
\end{gathered}
$$

2．3）Observe Hot $\lim _{x_{0} \geqslant 0} \frac{e^{-x_{0}^{-2}}}{x_{0}^{n}}=\lim _{y^{\operatorname{set}} y=\frac{1}{x_{0}}} \frac{y^{n}}{e^{y^{2}}}=0$ and similarly $\lim _{x_{0}>0} \frac{e^{-x_{0}^{-2}}}{x_{0}^{n}}=\lim _{y \rightarrow-\infty} \frac{y^{n}}{e^{y^{2}}}=0$
for any $n \in \mathbb{N}$ ． for any $n \in \mathbb{N}$ ． net $y=1 / x_{0}$
Thur $\lim _{x_{0} \rightarrow 0} P_{2}\left(x, x_{0}\right)=0$ ．The 0 －function
14) The function $x \longmapsto e^{-x^{-i}}$ doen not admit a Taylor expamion at 0 .

Exercise 5 5pt $\quad y=\alpha x$
21)


Regular partition in n subintervols:

$$
\begin{aligned}
& \text { Rright }(\rho, \rho)=\sum_{j=1}^{n} \pi \frac{1}{n}\left(\alpha \frac{j}{n}\right)^{2}=\pi \alpha^{2} \frac{1}{n^{3}} \sum_{j=1}^{m} j^{2} \\
& =\pi \alpha^{2} \frac{1}{n^{3}} \frac{n(n+1)(2 n+1)}{6} \xrightarrow[n \rightarrow \infty]{3}=: V_{\alpha}
\end{aligned}
$$

12) $S_{\alpha}=2 \pi \int_{0}^{1} \alpha x \sqrt{1+\alpha^{2}} d x$

$$
=\pi \alpha \sqrt{1+\alpha^{2}}
$$

23) $\frac{V_{\alpha}}{S_{\alpha}}=\frac{\pi \alpha^{2}}{3 \pi \alpha \sqrt{1+\alpha^{2}}}=\frac{1}{3} \frac{\alpha}{\sqrt{1+\alpha^{2}}}$


Exercise 6 , ts $a_{j}=\frac{1}{j(j+1)}$
2 1) One han $a_{j}=\frac{1}{j(j+1)} \leqslant \frac{1}{j^{2}}$ and $\sum_{j=1}^{\infty} \frac{1}{j^{2}}<\infty$, as seen during $H_{e}$ lecture, or by $H_{e}$ integral tet. By comparison lemma, $\sum_{j=1}^{\infty} \frac{1}{j(j+1)}<\infty$.
Thu $H_{r}$ series converges.
$12) B_{j}$ the ratio test: $\frac{a_{j+1} r^{j+1}}{a_{j} r^{j}}=\frac{j(j+1)}{(j+1)(j+2)} r$ $=\frac{j}{j+2} r$. Since $\frac{j}{j+2} \xrightarrow{j \rightarrow \infty} 1$, the radius of convergence is $R=1$.
23) One han $\sum_{j=1}^{\infty} a_{j} 1^{j}=\sum_{j=1}^{\infty} \frac{1}{j(j+1)}=\sum_{j=1}^{\infty}\left(\frac{1}{j}-\frac{1}{j+1}\right)$

$$
=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4} \ldots=1 .
$$

One han $\sum_{j=1}^{\infty} a_{j}(-1)^{j}=\sum_{j=1}^{\infty} \frac{(-1)^{j}}{j}-\frac{(-1)^{j}}{j+1}$

$$
\begin{aligned}
& =-\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j}-\sum_{j=1}^{\infty} \frac{(-1)^{j+2}}{j+1}= \\
& \left.=-\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j}-\sum_{k=2}^{\infty} \frac{(-1)^{k+1}}{k}+1-1\right) \\
& =-2 \ln (2)+1
\end{aligned}
$$

