Homework 9

Exercise 1 Consider $f:[a, b] \rightarrow \mathbb{R}$ continuous, and differentiable on (a, b), and suppose that f^{\prime} is also continuous on $[a, b]$. Show that the length ℓ of the curve defined by $\{(x, f(x)) \mid x \in[a, b]\}$ is given by the expression

$$
\ell=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x
$$

Exercise 2 Let $f:[a, b] \rightarrow \mathbb{R}_{+}$be continuous and consider the volume of revolution generated by the rotation of $\{(x, f(x)) \mid x \in[a, b]\}$ around the x-axis. Show that the volume V of this solid is given by the expression

$$
V=\pi \int_{a}^{b} f(x)^{2} \mathrm{~d} x
$$

Exercise 3 Let $f:[a, b] \rightarrow \mathbb{R}_{+}$be continuous, and differentiable on (a, b), and suppose that f^{\prime} is also continuous on $[a, b]$. Consider the surface of revolution generated by the rotation of the points $\{(x, f(x)) \mid x \in[a, b]\}$ around the x-axis. Show that the surface S is given by the expression

$$
S=2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x
$$

Exercise 4 (The painter's paradox) Consider the function $f:[1, b] \ni x \mapsto \frac{1}{x} \in \mathbb{R}_{+}$with $b>1$. In the setting of the previous two exercises show that for any $b>1$ one has $V=\pi\left(1-\frac{1}{b}\right)$ while $S>2 \pi \ln (b)$. By considering the limit $b \rightarrow \infty$ why do we get an apparent paradox?

