Homework 8

Exercise 1 Find the area under the graph of the function mentioned below and between the given bounds:

1. $x \mapsto x^{3}$ between $x=0$ and $x=2$,
2. $x \mapsto \mathrm{e}^{-x}$ between $x=0$ and $x=b>0$, what happens when $b \rightarrow \infty$?
3. $x \mapsto \cos (x)+\cos (2 x)$ between $x=0$ and $x=\pi / 4$,
4. $x \mapsto x-\sin (x)$ between $x=0$ and $x=\pi / 2$,
and represent each of these areas on a drawing.

Exercise 2 Write out the lower and the upper Riemann sums for the function $x \mapsto x^{2}$ in the interval $[0,2]$. Use a regular partition of the interval divided into n subintervals of the same length. The following formula can be used:

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

What happens when $n \rightarrow \infty$?

Exercise 3 Consider the function $[0,1] \ni x \mapsto \mathrm{e}^{x} \in \mathbb{R}$, and consider a regular partition of $[0,1]$ divided into n intervals of length $\frac{1}{n}$. Compute the following Riemann sums:

1. $I_{l}:=\sum_{j=0}^{n-1} \frac{1}{n} \mathrm{e}^{\frac{j}{n}} \quad$ left rule,
2. $I_{r}:=\sum_{j=1}^{n} \frac{1}{n} \mathrm{e}^{\frac{j}{n}} \quad$ right rule,
3. $I_{m}:=\sum_{j=0}^{n-1} \frac{1}{n} \mathrm{e}^{\frac{j+1 / 2}{n}} \quad$ midpoint rule,
4. $I_{t r i}:=\frac{1}{2}\left(I_{l}+I_{r}\right) \quad$ trapezoidal rule.

Illustrate these rules on a drawing, and compute the limit of these expressions when $n \rightarrow \infty$. The following formula can be used for any $a>0$ with $a \neq 1$:

$$
\sum_{k=0}^{m-1} a^{k}=\frac{1-a^{m}}{1-a}
$$

Exercise 4 Write the Riemann sums for the function $x \mapsto\left(x^{3}-6 x\right)$ on the interval [0, 3], and consider the limit when the number of subintervals goes to infinity. You can use the two equalities:

$$
\sum_{k=1}^{n} k=\frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}
$$

