Homework 6

Exercise 1 Find the critical points for the differentiable functions $f : \mathbb{R} \to \mathbb{R}$ defined for $x \in \mathbb{R}$ by

a) $-x^2 + 2x + 2$, b) $x^3 - 3$, c) $\cos(x)$, d) $\sin(x) + \cos(x)$.

Exercise 2 Set $e^{-x} := \frac{1}{e^x}$, and consider the functions hyperbolic cosine $\cosh : \mathbb{R} \to \mathbb{R}$ and hyperbolic sine $\sinh : \mathbb{R} \to \mathbb{R}$ defined by the formulas

$$\cosh(x) := \frac{e^x + e^{-x}}{2}$$
 and $\sinh(x) := \frac{e^x - e^{-x}}{2}$.

Compute the derivative of these functions and sketch the graph of the functions cosh and sinh. Prove the following relation:

$$\cosh(x)^2 - \sinh(x)^2 = 1, \qquad \forall x \in \mathbb{R}.$$

Exercise 3 Find the point of the curve of equation $y^2 = 4x$ which is the nearest one to the point (2,3).

Exercise 4 Show that $sin(x) \le x$ for any $x \ge 0$.

Exercise 5 Show that there are exactly two tangent lines to the graph of the function $f : \mathbb{R} \ni x \mapsto (x+1)^2 \in \mathbb{R}$ which pass through the origin. Find the equation of these lines (\Leftrightarrow find the two functions whose graphs correspond to these straight lines).

Exercise 6 Prove the following statement: Let $f : [a, b] \to \mathbb{R}$ be a strictly increasing and continuous function, and set $\alpha := f(a)$ and $\beta := f(b)$. Then there exists an inverse function $f^{-1} : [\alpha, \beta] \to [a, b]$ such that $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$ for any $x \in [a, b]$ and $y \in [\alpha, \beta]$.