Homework 6

Exercise 1 Find the critical points for the differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ defined for $x \in \mathbb{R}$ by
a) $-x^{2}+2 x+2$,
b) $x^{3}-3$,
c) $\cos (x)$,
d) $\sin (x)+\cos (x)$.

Exercise 2 Set $e^{-x}:=\frac{1}{e^{x}}$, and consider the functions hyperbolic cosine cosh : $\mathbb{R} \rightarrow \mathbb{R}$ and hyperbolic sine $\sinh : \mathbb{R} \rightarrow \mathbb{R}$ defined by the formulas

$$
\cosh (x):=\frac{e^{x}+e^{-x}}{2} \quad \text { and } \quad \sinh (x):=\frac{e^{x}-e^{-x}}{2} .
$$

Compute the derivative of these functions and sketch the graph of the functions cosh and sinh. Prove the following relation:

$$
\cosh (x)^{2}-\sinh (x)^{2}=1, \quad \forall x \in \mathbb{R}
$$

Exercise 3 Find the point of the curve of equation $y^{2}=4 x$ which is the nearest one to the point $(2,3)$.
Exercise 4 Show that $\sin (x) \leq x$ for any $x \geq 0$.
Exercise 5 Show that there are exactly two tangent lines to the graph of the function $f: \mathbb{R} \ni x \mapsto$ $(x+1)^{2} \in \mathbb{R}$ which pass through the origin. Find the equation of these lines (\Leftrightarrow find the two functions whose graphs correspond to these straight lines).

Exercise 6 Prove the following statement: Let $f:[a, b] \rightarrow \mathbb{R}$ be a strictly increasing and continuous function, and set $\alpha:=f(a)$ and $\beta:=f(b)$. Then there exists an inverse function $f^{-1}:[\alpha, \beta] \rightarrow[a, b]$ such that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(y)\right)=y$ for any $x \in[a, b]$ and $y \in[\alpha, \beta]$.

