Homework 5

Exercise 1 Find the equation of the tangent of the curve in \mathbb{R}^2 defined by the relation

$$F(x,y) = x^2 - y^2 + 3xy + 12 = 0$$

at the point (-4, 2).

Exercise 2 For $n \in \mathbb{N}$ let us set $p_{\frac{1}{n}}: (0,\infty) \to \mathbb{R}$ for the function defined by $p_{\frac{1}{n}}(x) := x^{\frac{1}{n}}$. If $m \in \mathbb{N}$ we also set $p_{\frac{m}{n}}: (0,\infty) \to \mathbb{R}$ by $p_{\frac{m}{n}}(x) \equiv x^{\frac{m}{n}} := (x^m)^{\frac{1}{n}} = (x^{\frac{1}{n}})^m$. Finally, for $q \in \mathbb{Q}_+$ we define the function $p_{-q}: (0,\infty) \to \mathbb{R}$ by $p_{-q}(x) \equiv x^{-q} := \frac{1}{x^q}$.

1) Show that the following equality holds:

$$p'_{\frac{1}{n}}(x) = \frac{1}{n} x^{\frac{1}{n}-1} .$$

For the proof you can use the equality

$$(a^{n} - b^{n}) = (a - b) \sum_{k=0}^{n-1} a^{n-k-1} b^{k}$$

for $a = (x+h)^{\frac{1}{n}}$ and $b = x^{\frac{1}{n}}$. Other arguments which do not involve this formula are also possible. 2) For $m, n \in \mathbb{N}$, deduce that

$$p'_{\frac{m}{n}}(x) = \frac{m}{n} x^{\frac{m}{n}-1} .$$

3) For any $q \in \mathbb{Q}_+$, show that

$$p'_{-q}(x) = -qx^{-q-1}.$$

Conclude that the equality $p'_q = q p_{q-1}$ holds for any $q \in \mathbb{Q}$.

Exercise 3 Compute and simplify the derivative of the functions $f : \mathbb{R} \to \mathbb{R}$ defined for $x \in \mathbb{R}$ by

a)
$$\sin\left((2x^2-3)^2\right)$$
 b) $\frac{(x+3)^3}{(2x-3)^2+1}$ c) $\frac{1}{\sin^2(3x)+1}$

Exercise 4 Compute the following limits:

(*i*) $\lim_{x \to 0} \frac{x - \sin(x)}{x^3}$, (*ii*) $\lim_{x \to 0} \frac{x^2}{1 + x - e^x}$.

Exercise 5 (Midterm 2019) For any $x \in \mathbb{R}$ with $x \neq -1$ we consider the sequence $(a_n)_{n \in \mathbb{N}}$ given by

$$a_n := \frac{x^n - 1}{1 + x^n}.$$

For which x does the limit $a_{\infty} := \lim_{n \to \infty} a_n$ exist ? Give the value of this limit whenever it exists. Represent your findings on a graph (the horizontal axis corresponds to the x-variable, the vertical axis to the values of a_{∞}).