Homework 4

Exercise 1 Compute the derivative of the functions $f : \mathbb{R} \to \mathbb{R}$ with f(x) provided by the following expressions:

a)
$$5x^4 + 4x^2 - 1$$
, b) $(x^5 + 1)(x^2 - 1)$, c) $\frac{5x - 1}{x - 5}$ for $x \neq 5$, d) $\frac{x^{25} - 2x}{x^2 + 3}$.

Exercise 2 By using that $\sin'(x) = \cos(x)$ show that $\cos'(x) = -\sin(x)$ for any $x \in \mathbb{R}$.

Exercise 3 Consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 \sin(1/x)$ if $x \neq 0$ and f(0) = 0.

- 1. Show that f is continuous at 0,
- 2. Compute the derivative of f at 0,
- 3. Compute the derivative of f at any $x \neq 0$,
- 4. Show that the derivative of f is well-defined but that this derivative is not continuous at 0.

<u>Indication</u>: you can use that $\lim_{y\to 0} \frac{\sin(y)}{y} = 1$.

Exercise 4 By using the indication mentioned above, compute the following limits:

- 1. $\lim_{h \to 0} \frac{\cos(h) 1}{h}$,
- 2. $\lim_{h\to 0} \frac{\cos(h)-1}{h^2}$.

Exercise 5 a) Let $f(x) = x^2 \sin(1/x)$ and $g(x) = \sin(x)$ for any $x \in (-1,0) \cup (0,1)$. Show that $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ does not exist, but that $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$.

b) Explain how this example fits in with L'Hospital's rule ?

Exercise 6 Compute the derivatives of order 1, 2 and 3 for the functions $f : \mathbb{R} \to \mathbb{R}$ defined for $x \in \mathbb{R}$ by

a)
$$\cos(x)$$
 b) $\cos(x)\sin(x)$ c) $x^4 + x^3 + x^2 + x^1 + 1$