Homework 4

Exercise 1 Compute the derivative of the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)$ provided by the following expressions:
a) $5 x^{4}+4 x^{2}-1$,
b) $\left(x^{5}+1\right)\left(x^{2}-1\right)$,
c) $\frac{5 x-1}{x-5} \quad$ for $x \neq 5$,
d) $\frac{x^{25}-2 x}{x^{2}+3}$.

Exercise 2 By using that $\sin ^{\prime}(x)=\cos (x)$ show that $\cos ^{\prime}(x)=-\sin (x)$ for any $x \in \mathbb{R}$.

Exercise 3 Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2} \sin (1 / x)$ if $x \neq 0$ and $f(0)=0$.

1. Show that f is continuous at 0 ,
2. Compute the derivative of f at 0 ,
3. Compute the derivative of f at any $x \neq 0$,
4. Show that the derivative of f is well-defined but that this derivative is not continuous at 0 .

Indication: you can use that $\lim _{y \rightarrow 0} \frac{\sin (y)}{y}=1$.

Exercise 4 By using the indication mentioned above, compute the following limits:

1. $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}$,
2. $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h^{2}}$.

Exercise 5 a) Let $f(x)=x^{2} \sin (1 / x)$ and $g(x)=\sin (x)$ for any $x \in(-1,0) \cup(0,1)$. Show that $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ does not exist, but that $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=0$.
b) Explain how this example fits in with L'Hospital's rule?

Exercise 6 Compute the derivatives of order 1,2 and 3 for the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ defined for $x \in \mathbb{R}$ by
a) $\cos (x)$
b) $\cos (x) \sin (x)$
c) $x^{4}+x^{3}+x^{2}+x^{1}+1$

