Homework 3

Exercise 1 Compute the following limits, if they exist:

- 1. $\lim_{x \to 0_{-}} \left(\frac{1}{x} + \frac{1}{|x|}\right)$ and $\lim_{x \to 0_{+}} \left(\frac{1}{x} + \frac{1}{|x|}\right)$, 2. $\lim_{x \to 2_{+}} \frac{x^2 + x - 6}{|x - 2|}$ and $\lim_{x \to 2_{-}} \frac{x^2 + x - 6}{|x - 2|}$,
- 3. $\lim_{h\to 0} \frac{\sqrt{1+h}-1}{h}$.

Exercise 2 Let I be an open interval in \mathbb{R} , and let $f: I \to \mathbb{R}$ be a continuous function. If $f(x) \neq 0$ for some $x \in I$, show that there exists $\delta > 0$ such that $f(x+h) \neq 0$ for any $h \in [-\delta, \delta]$.

Exercise 3 From its definition, determine the slope of the tangent at each point of the graph of the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = 2x^2 - 3x + 2$. Determine also the equation of the tangent at each point of the graph.

Exercise 4 Consider the function f defined by $f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$ for any $x \in \mathbb{R}$.

- 1. For any fixed $x \in \mathbb{R}$ show that the sum is convergent,
- 2. Compute the derivative of f,
- 3. What can you say about this function ?

Exercise 5 We say that a function $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous if for any $x \in \mathbb{R}$ and any $\varepsilon > 0$ there exists $\delta > 0$ (which depends on f and ε but NOT on x) such that $|f(x+h) - f(x)| \le \varepsilon$ for any $|h| \le \delta$. Show that the function defined by f(x) = x is uniformly continuous, but that the function defined by $f(x) = x^2$ is not uniformly continuous.