Homework 3

Exercise 1 Compute the following limits, if they exist:

1. $\lim _{x \rightarrow 0_{-}}\left(\frac{1}{x}+\frac{1}{|x|}\right)$ and $\lim _{x \rightarrow 0_{+}}\left(\frac{1}{x}+\frac{1}{|x|}\right)$,
2. $\lim _{x \rightarrow 2_{+}} \frac{x^{2}+x-6}{|x-2|}$ and $\lim _{x \rightarrow 2_{-}} \frac{x^{2}+x-6}{|x-2|}$,
3. $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$.

Exercise 2 Let I be an open interval in \mathbb{R}, and let $f: I \rightarrow \mathbb{R}$ be a continuous function. If $f(x) \neq 0$ for some $x \in I$, show that there exists $\delta>0$ such that $f(x+h) \neq 0$ for any $h \in[-\delta, \delta]$.

Exercise 3 From its definition, determine the slope of the tangent at each point of the graph of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=2 x^{2}-3 x+2$. Determine also the equation of the tangent at each point of the graph.

Exercise 4 Consider the function f defined by $f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for any $x \in \mathbb{R}$.

1. For any fixed $x \in \mathbb{R}$ show that the sum is convergent,
2. Compute the derivative of f,
3. What can you say about this function ?

Exercise 5 We say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous if for any $x \in \mathbb{R}$ and any $\varepsilon>0$ there exists $\delta>0$ (which depends on f and ε but NOT on x) such that $|f(x+h)-f(x)| \leq \varepsilon$ for any $|h| \leq \delta$. Show that the function defined by $f(x)=x$ is uniformly continuous, but that the function defined by $f(x)=x^{2}$ is not uniformly continuous.

