Homework 2

Exercise 1 Consider the expression $\frac{x^{2}+3 x+2}{x^{2}+x-2}$. Determine for which $x \in \mathbb{R}$ this expression is well-defined, and simplify this expression. Determine the maximal domain on which the function $x \mapsto \frac{x^{2}+3 x+2}{x^{2}+x-2}$ can be defined.

Exercise 2 A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be even if $f(-x)=f(x)$ for any $x \in \mathbb{R}$, and f is said to be odd if $f(-x)=-f(x)$ for any $x \in \mathbb{R}$.

1) Determine which of the functions defined for $x \in \mathbb{R}$ by
a) $f(x)=x$,
b) $f(x)=x^{2}$,
c) $f(x)=x^{2}+x$,
d) $f(x)=\sin (x)$,
e) $f(x)=\left\{\begin{array}{cc}1 / x & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$
are even or odd?
2) Show that for any function f, the function $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=\frac{1}{2}(f(x)+f(-x))$ is an even function while the function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=\frac{1}{2}(f(x)-f(-x))$ is an odd function. In addition, observe that $f=g+h$.
3) What can you say about the graph of an even function, and about the graph of an odd function?

Exercise 3 Consider $f: \mathbb{R} \ni x \mapsto x^{2} \in \mathbb{R}$ and $g: \mathbb{R}_{+} \ni x \mapsto \sqrt{x}-1 \in \mathbb{R}$, and determine if the following functions are well defined:
a) $f \circ g$,
b) $f \circ f$,
c) $g \circ g$.

If one function is not well defined, on which maximal domain can one define it ?

Exercise 4 Sketch the graph of the following function $f: \mathbb{R} \rightarrow \mathbb{R}$ given for $x \in \mathbb{R}$ by
a) $f(x)=\frac{1}{2} x-2$,
b) $f(x)=x-3$,
c) $f(x)=x^{2}+3 x+2$,
d) $f(x)=\left\{\begin{array}{cl}1+1 /(x-2) & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{array}\right.$.

Exercise 5 Determine the equation of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ whose graph is a straight line containing the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of \mathbb{R}^{2}. What is the slope of this line?

Exercise 6 Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions. Show as precisely as possible that

1. the sum $\lambda f+g$ is continuous on \mathbb{R} for any $\lambda \in \mathbb{R}$,
2. the product $f g$ is continuous on \mathbb{R}.
