Homework 1

Exercise 1 Determine all numbers $x \in \mathbb{R}$ satisfying the following inequalities:
a) $|x-1|<2$,
b) $|2 x-3| \leq 4$,
c) $\left|x^{2}-1\right| \leq 1$.

Exercise 2 For $x>0$ and $y>0$ simplify the expression $\left(\frac{5 x^{3 / 2} y^{4}}{x^{3} y^{-1}}\right)^{-4}$.
Exercise 3 Consider two real sequences $\left(a_{n}\right)_{n \in \mathbb{N}}$ and $\left(b_{n}\right)_{n \in \mathbb{N}}$ such that $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left|b_{n}\right| \leq C$ for one $C>0$ and all $n \in \mathbb{N}$ (we say that the sequence $\left(b_{n}\right)_{n \in \mathbb{N}}$ is bounded). Show that $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.

Exercise 4 Consider the sequences $\left(a_{n}\right)_{n \in \mathbb{N}^{*}}$ defined below and show (with ε and N) that these sequences are convergent. Can you find their limit?
(i) $a_{n}=\frac{1}{n^{2}}$,
(ii) $a_{n}=\sqrt{n+1}-\sqrt{n}$,
(iii) $a_{n}=\sqrt{n^{2}+5 n}-n$.

More challenging: Consider $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ and show that the corresponding sequence is convergent. In your proof you can use the equality

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}=\sum_{k=0}^{n}\binom{n}{k} x^{n-k} y^{k}
$$

with $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
Exercise 5 Show that the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ given by $a_{1}=1$ and $a_{n+1}=3-\frac{1}{a_{n}}$ for any $n \geq 1$ is increasing and bounded from above by 3. Deduce that this sequence is convergent and give its limit.

