Mathematics Tutorial Ia

Instructor : Serge Richard

Homework 1

Exercise 1 Determine all numbers $x \in \mathbb{R}$ satisfying the following inequalities:

a)
$$|x-1| < 2$$
, b) $|2x-3| \le 4$, c) $|x^2-1| \le 1$.

Exercise 2 For x > 0 and y > 0 simplify the expression $\left(\frac{5x^{3/2}y^4}{x^3y^{-1}}\right)^{-4}$.

Exercise 3 Consider two real sequences $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} a_n = 0$ and $|b_n| \leq C$ for one C > 0 and all $n \in \mathbb{N}$ (we say that the sequence $(b_n)_{n\in\mathbb{N}}$ is bounded). Show that $\lim_{n\to\infty} a_n b_n = 0$.

Exercise 4 Consider the sequences $(a_n)_{n\in\mathbb{N}^*}$ defined below and show (with ε and N) that these sequences are convergent. Can you find their limit?

(i)
$$a_n = \frac{1}{n^2}$$
,

(ii)
$$a_n = \sqrt{n+1} - \sqrt{n}$$
,

(iii)
$$a_n = \sqrt{n^2 + 5n} - n$$
.

More challenging: Consider $a_n = (1 + \frac{1}{n})^n$ and show that the corresponding sequence is convergent. In your proof you can use the equality

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

with
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

Exercise 5 Show that the sequence $(a_n)_{n\in\mathbb{N}}$ given by $a_1=1$ and $a_{n+1}=3-\frac{1}{a_n}$ for any $n\geq 1$ is increasing and bounded from above by 3. Deduce that this sequence is convergent and give its limit.