Report

Li Yucheng

November 2022

1 Proof of Theorem 2.5.6 Selection Rule

Let (\mathscr{H}, U) be a unitary representation which can be decomposed into $\mathscr{H}=\oplus_{j} \nu_{j} \mathscr{H}^{j}, U=$ $\oplus_{j} \nu_{j} U^{j}$. Then, we define \mathscr{U} by $\mathscr{U}(a) T:=U(a) T U(a)^{-1}$. Note that $\mathscr{U}: G \rightarrow \mathscr{L}(\mathscr{B}(\mathscr{H}))$ defines a representation since $\mathscr{U}(e) T=U(e) T U(e)^{-1}=T \rightarrow \mathscr{U}(e)=\mathbb{1}$ and $\mathscr{U}(a b) T=$ $U(a b) T U(a b)^{-1}=U(a) U(b) T U(b)^{-1} U(a)^{-1}=\mathscr{U}(a) U(b) T U(b)^{-1}=\mathscr{U}(a) \mathscr{U}(b) T \rightarrow \mathscr{U}(a b)=$ $\mathscr{U}(a) \mathscr{U}(b)$.

Now we decompose this representation into irreducible representation $\mathscr{L}(\mathscr{B}(\mathscr{H}))=$ $\oplus_{l} \mu_{l} \mathscr{L}^{l}, \mathscr{U}=\oplus_{l} \mu_{l} \mathscr{U}^{l}$, where \mathscr{L} is the vector space of elements of $\mathscr{B}(\mathscr{H})$. Then, according to Lemma 2.3.6 (Schur lemma), we can define a similarity transformation $\tau_{l}: \mathscr{H}^{l} \rightarrow \mathscr{L}^{l}$ such that

$$
\begin{equation*}
\tau_{l} U^{l}(a)=\mathscr{U}(a) \tau_{l} . \tag{1}
\end{equation*}
$$

Thus, for any $f \in \mathscr{H}^{l}$ and any $a \in G$, we have

$$
\begin{equation*}
\tau_{l}\left(U^{l}(a) f\right)=\mathscr{U}(a) \tau_{l}(f)=U(a) \tau_{l}(f) U(a)^{-1} . \tag{2}
\end{equation*}
$$

Set $\mathscr{H}^{j, \nu}$ as one irreducible subspace of $\oplus_{j} \nu_{j} \mathscr{H}^{j}$ with $\nu \in 1, \ldots, \nu_{j}$. We define $\mathscr{M}_{l}^{j, \nu}:=$ $\left\{\tau_{l}(f) \psi \mid f \in \mathscr{H}^{l}, \psi \in \mathscr{H}^{j, \nu}\right\}$. This is invariant under the action of $U(a)$ for any $a \in G$ since $U(a) \mathscr{M}_{l}^{j, \nu}=U(a) \tau_{l}\left(\mathscr{H}^{l}\right) \mathscr{H}^{j, \nu}=\tau_{l}\left(U^{l}(a) \mathscr{H}^{l}\right) U(a) \mathscr{H}^{j, \nu}=\tau_{l}\left(\mathscr{H}^{l}\right) \mathscr{H}^{j, \nu}=\mathscr{M}_{l}^{j, \nu}$ due to eq. (2). This means that $\mathscr{M}_{l}^{j, \nu}=\oplus_{j} \nu_{j}^{\prime} \mathscr{H}^{j}$, where $\nu_{j}^{\prime} \leq \nu_{j}$.

Consider the tensor product $\left(\mathscr{H}^{l} \otimes \mathscr{H}^{j}, U^{l} \otimes U^{j}\right)$ being a representation of G. Define the map $Z: \mathscr{H}^{l} \otimes \mathscr{H}^{j} \rightarrow \mathscr{M}_{l}^{j, \nu}, \quad Z(f \otimes \psi)=\tau_{l}(f) \tilde{\psi}$, where $f \in \mathscr{H}^{l}, \psi \in \mathscr{H}^{j}$. The $\tilde{\psi}$ is ψ in $\mathscr{H}^{j, \nu}$. The image of Z is dense in $\mathscr{H}^{j, \nu}$, thus

$$
\begin{aligned}
Z\left(U^{l}(a) \otimes U^{j}(a) \quad f \otimes \psi\right) & =Z\left(U^{l}(a) f \otimes U^{j}(a) \psi\right) \\
& =\tau_{l}\left(U^{l}(a) f\right) \widehat{U^{j}(a) \psi} \\
& =U(a) \tau_{l}(f) U(a)^{-1} U^{j}(a) \tilde{\psi} \\
& =U(a) \tau_{l}(f) \tilde{\psi} \\
& =U(a) Z(f \otimes \psi),
\end{aligned}
$$

where in the third equality we used eq. (2) and that U^{j} acts as $U(a)$ on $\mathscr{H}^{j, \nu}$. Note that the image of Z is on $\mathscr{M}_{l}^{j, \nu}$, we can then get the conclusion

$$
\begin{equation*}
Z \quad U^{l} \otimes U^{j}=\left.U\right|_{M_{l}^{j, \nu}} \quad Z . \tag{3}
\end{equation*}
$$

Decompose $\left(\mathscr{H}^{l} \otimes \mathscr{H}^{j}, U^{l} \otimes U^{j}\right)=\left(\oplus_{i} \gamma_{i} \mathscr{H}^{i}, \oplus \gamma_{i} U^{i}\right)$. For one irreducible representation $\left(\mathscr{H}^{i}, U^{i}\right)$ of this decomposition, we define the restricted version of Z on \mathscr{H}^{i} by $Z_{i}=\left.Z\right|_{\mathscr{H}^{i}}$.

Thus, by replacing $U^{l} \otimes U^{j}$ with U^{i} and replacing Z with Z_{i} in eq. (3), we have $Z_{i} \quad U^{i}=$ $\left.U\right|_{\mathscr{M}_{i}^{j, \nu}} \quad Z_{i}$.

According to Proposition 2.15 in Amrein's note, if $\operatorname{ker} Z_{i} \neq \mathscr{H}^{i}$, then Z_{i} is a similarity transformation, so that $\left(Z_{i} \mathscr{H}^{i},\left.U\right|_{Z_{i} \mathscr{H}^{i}}\right)$ and $\left(\mathscr{H}^{i}, U^{i}\right)$ should be in the same class η_{i}. Thus, (recall that in paragraph 3 we decomposed $\mathscr{M}_{l}^{j, \nu}$ and there are ν_{i} representations of class η_{i}), there should be at least one subspace in $\mathscr{M}_{l}^{j, \nu}$ in the class η_{i}, which means that $\mathscr{H}^{l} \otimes \mathscr{H}^{j}$ and $\mathscr{M}_{l}^{j, \nu}$ have at least one representation in common (in the class η_{i}).

Then, when constructing the inner product $\left\langle\phi, \tau_{l}(f) \psi\right\rangle, \phi \in \mathscr{H}^{i}$ of an element of \mathscr{H}^{i} with i being arbitrary and an element of $\mathscr{M}_{l}^{j, \nu}$, the result will depend on whether there is a representation of the same class in the decomposition of $\left(\mathscr{H}^{l} \otimes \mathscr{H}^{j}, U^{l} \otimes U^{j}\right)$. If there exists, then the inner product will not be 0 in general, but if there does not, it will be 0 due to the orthogonality of the decomposition.

