Report

Li Yucheng

November 2022

1 Proof of Exercise 2.6.1

For an arbitrary normalized state $|f\rangle \in \mathscr{H}$, $|f\rangle\langle f|$ is a pure state. According to the definition of rays, we can use $|f\rangle$ to define a one-dimensional vector space $\hat{f} = \{\lambda | f\rangle \mid \lambda \in \mathbb{C}\}$. One can notice that this space is unique.

Conversely, if we first define the ray $\hat{f} = \{\lambda | f \rangle \mid \lambda \in \mathbb{C}\}$ with some normalized state $|f\rangle$, we can use the vectors in \hat{f} that have unit length to construct pure states that has the form $|f\rangle\langle f|$. However, due to the calculation rule of coefficients of states in \mathscr{H} , the effect of phase does not matter, and we have constructed a unique pure state out of an element $\hat{f} \in \hat{\mathscr{H}}$.

Then we can find that the rays and pure states are in one-to-one correspondence, in other words, bijection.