# Report 

li.yucheng

October 2022

## 1 Proof of Exercise 2.3.2.

Let $v$ be an arbitrary vector in space $V$. Then we obviously have a conclusion that $\operatorname{dim}(U(G) v) \leq$ $|G|$, that is, the dimension of subspace formed by $U(G) v$ should not be larger than the cardinality of group G. Notice that $U(G) v$ is an invariant subspace, because $U(G) U(G) v=$ $U(G G) v=U(G) v$. According to the definition of irreducibility, this $U(G) v$ is not 0 , so it must be the space $V$ itself. Thus we have $\operatorname{dim}(V)=\operatorname{dim}(U(G) v) \leq|G|$.

## 2 Proof of Proposition 2.3.9

First, let us define the subrepresentation (according to Serre's book).
Definition:Let $U: G \mapsto \mathscr{L}(V)$ be a linear representation and let $W$ be a subspace of $V$. Suppose that $W$ is invariant under the action of $G$. The restriction $U(G)$ of $U(G)$ to $W$ is then an isomorphism of $W$ onto itself, and we have $U(a) U(b)=U(a b)$, for any $a, b$ in $W$. Thus $U \because G \mapsto \mathscr{L}(W)$ is a linear representation of $G$ in $W$; $W$ is said to be a subrepresentation of $V$.

Proposition: Let $G$ be a finite group and assume that $G_{0}$ is an Abelian subgroup of $G$. Then any irreducible representation of $G$ is of dimension at most $|G| /\left|G_{0}\right|$.

Proof: Let $U: G \mapsto \mathscr{L}(V)$ be an irreducible representation of $G$. Now we restrict our mind to the subgroup $G_{0}$, and by the same representation only acting on $G_{0}$, we still have $U: G_{0} \mapsto \mathscr{L}(V)$. Let $W \subset V$ be an irreducible subrepresentation of $U$ acting on $G_{0}$. By Corollary 2.3.8, we have $\operatorname{dim}(W)=1$. Just like what we did in the proof of Exercise 2.3.2, the space $U(G) W$ is obviously invariant. Since $U$ is irreducible, $U(G) W$ must be $V$ itself. Notice that for any element $s \in G, U\left(s G_{0}\right) W=U(s) U\left(G_{0}\right) W=U(s) W$, where $U(s) W$ is an arbitrary vector in $V$. We can find that through the representation map $U$, we have defined an equivalence relation between $s G_{0}$ and $s$, or a left coset. This means that $U\left(s G_{0}\right) W$ and $U(s)$ denotes the same vector in $V$. Thus, the dimension of $V$ means the number of distinct cosets of $G_{0}$ in $G$. So one should naturally get that $\operatorname{dim}(V) \leq|G| /\left|G_{0}\right| \times \operatorname{dim}(W)=|G| /\left|G_{0}\right|$, where $|G| /\left|G_{0}\right|$ is defined as the number of cosets.

