Exercise 1.2.9

li.yucheng

October 2022

1 Proof of Proposition 1.2.8

1.1

From the definition of $[a]_{G_{0}}$ above the Proposition 1.2.8, we know that $[a]_{G_{0}}=G_{0} a$ and $G_{G_{0}}[a]=a G_{0}$. Thus, if we have $[a]_{G_{0}}={ }_{G_{0}}[a]$, we get $a G_{0}=G_{0} a$. Multiplying both sides by a^{-1} from left, we have $a G_{0} a^{-1}=G_{0}$ for an arbitrary $a \in G$, and this is just the definition of normal subgroup. If we suppose G_{0} is a normal subgroup, we just need to reverse the procedure above and will find that $[a]_{G_{0}}={ }_{G_{0}}[a]$

1.2

First we can find that $[a]_{G_{0}}[b]_{G_{0}}=G_{0} a G_{0} b=G_{0} G_{0} a b=G_{0} a b=[a b]_{G_{0}}$ by using the property of normal subgroup, which does define a product on the equivalence classes. Substitute $[b]_{G_{0}}$ by $[a]_{G_{0}}^{-1}:=\left[a^{-1}\right]_{G_{0}}$, we get G_{0}. This is the unit element in $[a]_{G_{0}}$, which can be proved by $G_{0}[b]_{G_{0}}=G_{0} G_{0} b=G_{0} b=[b]_{G_{0}}$, for any $b \in G$. Thus, these operations do define a group denoted by G / G_{0}.

2 Second part of exercise 1.2.9

We need to prove that

$$
\begin{equation*}
\left|G / G_{0}\right|=\frac{|G|}{\left|G_{0}\right|} \tag{1}
\end{equation*}
$$

Suppose there are r elements in G_{0} and m classes in the quotient group G / G_{0}. From the definition of quotient group, if we represent each of the m classes by a representative v_{i}, we have

$$
\begin{equation*}
v_{i} \notin G_{0} v_{j}, \quad i \neq j \tag{2}
\end{equation*}
$$

We can see that each class has the $G_{0} v_{i}$ expression, so there are r elements in each class. Thus, the m classes has $m r$ elements in total. This means that G has at least $m r$ elements.

Now we suppose $|G|>m r$. Other than $m r$ elements, there exists at least 1 element that does not belong to any of the m classes. Consider the class $[b]_{G_{0}}={ }_{G_{0}}[b]=b G_{0}=G_{0} b$, where b is an element other than the $m r$ elements. This new class is not in the m classes, otherwise b itself would be in the m classes. But this indicates that together with this new class, we have $m+1$ classes in total, which contradicts to the assumption that we only have m classes.

Thus, we must conclude that $|G|=m r$, which proves the validity of (1).

