Nagoya University, G30 Program Fall 2022 (October 19, 2022)
SML: Groups and Their Representations Instructor: Serge Richard

On Inner and Outer Semi-Direct Products (Exercises 1.3.5, 1.3.7)

This report aims to prove the equivalence of the inner and outer semi-direct products. Both semi-direct products might
seem different on first glance. The concept of an inner semi-direct product is that if a group G has two subgroups N
and H with N <G and meets a few conditions, then we say that the group G is an inner semi-direct product of the two
subgroups. In other words, we use our knowledge of the group and subgroups to say something about the relationship
between the group G and the two subgroups N and H.

On the other hand, the concept of the outer semi-direct product is to take two completely arbitrary groups and create a
new group. While there might be countless ways to merge two sets together, the challenge here is to find a binary oper-
ation (the group operation) and an unary operation (the inverse) such that the merged set along with the two operations
satisfy the three conditions of a group (and therefore forms a group).

1. Definition and uniqueness
A group G is called the inner semi-direct product of two of its subgroups N and H if they satisfy the following conditions:
1) N is a normal subgroup of G,
2) N N H = {eg} with eg the identity element of G,
3) Each element g of G admits a decomposition g = nh withn € Nand h € H.
If these three conditions are satisfied, we write G = N =< H.
Proposition. Condition 2) above implies that the decomposition described in 3) is unique.

Proof. Let g € G, ny,ny € N and hy, hy € G. Suppose that g = njh; = nyh,. Then one has
nz_lnlhl =h) & nglnl = hzhl_l.

The left-hand side of the equation is an element of N, while the right hand-side of the equation belongs to H. As per
condition 2), the only element in common between N and H is eg. Thus, n; In, = hzhl’1 = eg. Thus, ny = n, and
hy = hy, and we conclude that the decomposition of any element g is unique. O

On the other hand, the construction of the outer semi-direct product is more challenging. Let us have two arbitrary
groups N and H. Consider a map ¢ : H — Aut(N), where Aut(/N) is the group consisting of the set of all automorphisms
of N along with the usual map composition as the group operation. We then define the outer semi-direct product of N
and H as N =y, H as the set {(n, h) | n € N, h € H} with the (binary) operation

(1, h)) (2, hy) = (i [Y(h)](m2), hihs),

and the inverse (n, h)™! = ([y(h™")](n™"), h~!). We identify N with the set {(n, ex) | n € N} and H with the set {(ey, h) |
h € H}.

2. Proof that N =, H is a Group and N < (N >, H)
To prove G = N >, H is a group, we need to prove that G satisfies the three conditions of a group.

First, let us prove associativity. Let (ny, h1), (n2, h2), (n3, h3) € N =y, H. Then,

((m,hl)(’lz,hz))(n& h3) = (n1[Y(h)](n2), hiho) (n3, h3)
= ([ (h)])(m) ¥ (h1h2))(n3), hihohs)
(1, 7)1, ha)(n3, 1)) = (1, ) (mal (o)) (3), ahis)

= (m[y(h)(n2[¥(h2)1(n3)), h1hahs)
= (m [y (h))(n) [ (h1h2)](n3), hihahs) .
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We have made use of the fact that /(%) is an automorphism of N for all 4 € H and [y/(h )W (hy)](n) = [Y(h1hy)](n). Next,
we prove that e = (ey, ey) is the identity element of G:

ec(n,h) = (en,en)(n, h) = (en[¥(en)l(n), enh) = (enn, h) = (n, h),
(n, Weg = (n,h)(en, en) = (n[Y(W)](en), hey) = (ney, h) = (n, h).
Here, we have used the fact that [/(ey)](n) is the identity map on N, and any automorphism must map ey to ey itself.

Then, we prove that the inverse defined on N >, H satisfies the inverse condition:

(n, h)(n, )™ = (n, YA h™ D107, 1) = (nly "), k") = (nlye)(n™"), en) = (ens en),
(n, )™ (n, 1) = (D10, D, ) = ([ eI, k') = ([wh™)(en), en) = (exs en).

With these three conditions fulfilled, we have proven that G = N>, H is a group. Next, we prove that N = {n, ey | n € N}
is a normal subgroup of G. For all (n,h) € G and (k,ey) € N, one has:

(n, h)(k, e)(n, )™ = (n, W)k, e (L Ch™ D171, ") = (nly(W)ICK), hep) (Iw(h™HIn™), 1)
= (YR Ry, k™) = (nly(MIn™" en) € N .

As such, we conclude that N < (N >, H).

3. The Equivalence of the Inner and Outer Semi-Direct Products
In this section, we will prove the equivalence of both concepts. To do this, we must prove this relationship both ways.

3.1. All Inner Semi-Direct Products are Outer Semi-Direct Products
Let us consider the automorphism of N defined by [y(h)](n) = hnh™'. We now define the map

Y : H— Aut(N)
h — [y(W](n).

Let us now prove that ¢ is a homomorphism by proving [(h;) o ¥(hy)](n) = [Y(hihy)](n):
[W(h) o y(h)1(n) = [Y(h)1(hanhs") = hy(hanhs iy = hihanhs byt = (hiho)n(hihe)™ = [Y(hiho)](n).

Let us now define an map ¢ : G — N >, H defined by ¢(g) = ¢(nh) = (n, h).

Due to condition 3) on N and H (all g € G has unique decomposition g = nh forn € N and h € H), ¢ is well-defined for
all g, and from that we also have that ¢ is surjective.

Since ey~,z = (€, €c), we have that Ker(¢) = {eg}, so we have that ¢ is injective (and thus bijective).

Finally, we prove that ¢ is a homomorphism by showing ¢(g1)¢(g2) = #(g182):

B(g1)P(g2) = (n1, hy)(n2, hy) = (mi[W(h))(n2), hiha) = (nihinah' hyhy) = ¢(nihinahy) = ¢(g182).
Therefore, we have proven that ¢ is an isomorphism, so we conclude that G ~ N >, H
3.2. All Outer Semi-Direct Products are Inner Semi-Direct Products
Letus set G = N >, H. Let us first prove that Gy = {(n,ey) | n € N} and Gy = {(en, h) | h € H} are subgroups.

Let us first prove it for Gy. We have that ey € N, so (ey, ey) = eg € Gy. Then, we have for ny,n;,n3 € N:

(001, em)(ma, 1)) (3, e) = (mT(en)l(ma), enen)ms, en) = (mima, en)(ns, )
= (mnma[Y(en)l(n3), enen) = (ninans, en)

= (m1, h)(mams, e) = (1, hy)((na, e)(n3, en)
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As such, we have proven associativity. Next, we prove the inverse condition:
(noem)n™", en) = (nly(eml(n™), epre) = (nn™", en) = (e, en) = e
(™! em)n, en) = (0 [Wlem)l(n), epre) = (n”'n,en) = (e, en) = e
Therefore, we conclude that Gy is a subgroup of G.
For G, observe that since ey € H, (en, ey) = eg € Gg. Then, for hy, hy,h; € H,
((ew- hi)ew. 1)) (e h3) = (en[(h)I(en), hihy)(en. hs) = (ex. hihahs)
= (en[¥(h)](en), hihahs) = (en, hi)(en, hahs)
= (en, h)en[W(h)l(en), hahs) = (en, m)((en, ha)(ew, h3)

As such, we have proven associativity. Next, we prove the inverse condition:

(en, M(en, h™Y) = (en[(M)](en), hh™") = (en, en) = ec,
(en, ™ Yen, h) = (exlyth™D(en), k™' h) = (en, en) = eg.
As such, we conclude that Gy is also a subgroup of G.
All we have to do is to prove that Gy and Gy satisfy the three conditions on inner semi-direct products stipulated above.

First, we prove that Gy <G. Let (k,ey) € Gy and (n,h) € G. Then,
(n, )k, er)(n, )™ = (aly (WK, h) (IR~ 17"), 171) = (G - [ (k) 0 w17, hh™")
= (rLy(WIK) - [yemIn™), en) = (nly(MIn™" en) € Gy.

Therefore, G is a normal subgroup of G.

Next, we observe that Gy N Gy = {eg}. Finally, we observe that Y(n, h) € G:

(n,en)(en,h) = (n[y(en)l(en), enh) = (ney,egh) = (n,h) = g.
Observe that (n, ey) € Gy and (ey, h) € Gy. Thus, the three conditions are fulfilled. As such, G = Gy =< Gy.

Therefore, we conclude that the inner semi-direct product is equivalent to the outer semi-direct product.
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