On Inner and Outer Semi-Direct Products (Exercises 1.3.5, 1.3.7)

This report aims to prove the equivalence of the inner and outer semi-direct products. Both semi-direct products might seem different on first glance. The concept of an inner semi-direct product is that if a group G has two subgroups N and H with $N \triangleleft G$ and meets a few conditions, then we say that the group G is an inner semi-direct product of the two subgroups. In other words, we use our knowledge of the group and subgroups to say something about the relationship between the group G and the two subgroups N and H.
On the other hand, the concept of the outer semi-direct product is to take two completely arbitrary groups and create a new group. While there might be countless ways to merge two sets together, the challenge here is to find a binary operation (the group operation) and an unary operation (the inverse) such that the merged set along with the two operations satisfy the three conditions of a group (and therefore forms a group).

1. Definition and uniqueness

A group G is called the inner semi-direct product of two of its subgroups N and H if they satisfy the following conditions:

1) N is a normal subgroup of G,
2) $N \cap H=\left\{e_{G}\right\}$ with e_{G} the identity element of G,
3) Each element g of G admits a decomposition $g=n h$ with $n \in N$ and $h \in H$.

If these three conditions are satisfied, we write $G=N \rtimes H$.
Proposition. Condition 2) above implies that the decomposition described in 3) is unique.
Proof. Let $g \in G, n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in G$. Suppose that $g=n_{1} h_{1}=n_{2} h_{2}$. Then one has

$$
n_{2}^{-1} n_{1} h_{1}=h_{2} \Longleftrightarrow n_{2}^{-1} n_{1}=h_{2} h_{1}^{-1} .
$$

The left-hand side of the equation is an element of N, while the right hand-side of the equation belongs to H. As per condition 2), the only element in common between N and H is e_{G}. Thus, $n_{2}^{-1} n_{1}=h_{2} h_{1}^{-1}=e_{G}$. Thus, $n_{1}=n_{2}$ and $h_{1}=h_{2}$, and we conclude that the decomposition of any element g is unique.

On the other hand, the construction of the outer semi-direct product is more challenging. Let us have two arbitrary groups N and H. Consider a map $\psi: H \rightarrow \operatorname{Aut}(N)$, where $\operatorname{Aut}(N)$ is the group consisting of the set of all automorphisms of N along with the usual map composition as the group operation. We then define the outer semi-direct product of N and H as $N \rtimes_{\psi} H$ as the set $\{(n, h) \mid n \in N, h \in H\}$ with the (binary) operation

$$
\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right):=\left(n_{1}\left[\psi\left(h_{1}\right)\right]\left(n_{2}\right), h_{1} h_{2}\right),
$$

and the inverse $(n, h)^{-1}=\left(\left[\psi\left(h^{-1}\right)\right]\left(n^{-1}\right), h^{-1}\right)$. We identify N with the set $\left\{\left(n, e_{H}\right) \mid n \in N\right\}$ and H with the set $\left\{\left(e_{N}, h\right) \mid\right.$ $h \in H\}$.

2. Proof that $N \rtimes_{\psi} H$ is a Group and $N \triangleleft\left(N \rtimes_{\psi} H\right)$

To prove $G=N \rtimes_{\psi} H$ is a group, we need to prove that G satisfies the three conditions of a group.
First, let us prove associativity. Let $\left(n_{1}, h_{1}\right),\left(n_{2}, h_{2}\right),\left(n_{3}, h_{3}\right) \in N \rtimes_{\psi} H$. Then,

$$
\begin{aligned}
\left(\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)\right)\left(n_{3}, h_{3}\right) & =\left(n_{1}\left[\psi\left(h_{1}\right)\right]\left(n_{2}\right), h_{1} h_{2}\right)\left(n_{3}, h_{3}\right) \\
& =\left(n_{1}\left[\psi\left(h_{1}\right)\right]\left(n_{2}\right)\left[\psi\left(h_{1} h_{2}\right)\right]\left(n_{3}\right), h_{1} h_{2} h_{3}\right) \\
\left(n_{1}, h_{1}\right)\left(\left(n_{2}, h_{2}\right)\left(n_{3}, h_{3}\right)\right) & =\left(n_{1}, h_{1}\right)\left(n_{2}\left[\psi\left(h_{2}\right)\right]\left(n_{3}\right), h_{2} h_{3}\right) \\
& =\left(n_{1}\left[\psi\left(h_{1}\right)\right]\left(n_{2}\left[\psi\left(h_{2}\right)\right]\left(n_{3}\right)\right), h_{1} h_{2} h_{3}\right) \\
& =\left(n_{1}\left[\psi\left(h_{1}\right)\right]\left(n_{2}\right)\left[\psi\left(h_{1} h_{2}\right)\right]\left(n_{3}\right), h_{1} h_{2} h_{3}\right) .
\end{aligned}
$$

We have made use of the fact that $\psi(h)$ is an automorphism of N for all $h \in H$ and $\left[\psi\left(h_{1}\right) \psi\left(h_{2}\right)\right](n)=\left[\psi\left(h_{1} h_{2}\right)\right](n)$. Next, we prove that $e_{G}=\left(e_{N}, e_{H}\right)$ is the identity element of G :

$$
\begin{aligned}
& e_{G}(n, h)=\left(e_{N}, e_{H}\right)(n, h)=\left(e_{N}\left[\psi\left(e_{H}\right)\right](n), e_{H} h\right)=\left(e_{N} n, h\right)=(n, h), \\
& (n, h) e_{G}=(n, h)\left(e_{N}, e_{H}\right)=\left(n[\psi(h)]\left(e_{N}\right), h e_{H}\right)=\left(n e_{N}, h\right)=(n, h) .
\end{aligned}
$$

Here, we have used the fact that $\left[\psi\left(e_{H}\right)\right](n)$ is the identity map on N, and any automorphism must map e_{N} to e_{N} itself. Then, we prove that the inverse defined on $N \rtimes_{\psi} H$ satisfies the inverse condition:

$$
\begin{aligned}
& (n, h)(n, h)^{-1}=(n, h)\left(\left[\psi\left(h^{-1}\right)\right]\left(n^{-1}\right), h^{-1}\right)=\left(n\left[\psi(h) \psi\left(h^{-1}\right)\right]\left(n^{-1}\right), h h^{-1}\right)=\left(n\left[\psi\left(e_{H}\right)\right]\left(n^{-1}\right), e_{H}\right)=\left(e_{N}, e_{H}\right), \\
& (n, h)^{-1}(n, h)=\left(\left[\psi\left(h^{-1}\right)\right]\left(n^{-1}\right), h^{-1}\right)(n, h)=\left(\left[\psi\left(h^{-1}\right)\right]\left(n^{-1}\right)\left[\psi\left(h^{-1}\right)\right](n), h^{-1} h\right)=\left(\left[\psi\left(h^{-1}\right)\right]\left(e_{N}\right), e_{H}\right)=\left(e_{N}, e_{H}\right)
\end{aligned}
$$

With these three conditions fulfilled, we have proven that $G=N \rtimes_{\psi} H$ is a group. Next, we prove that $N=\left\{n, e_{H} \mid n \in N\right\}$ is a normal subgroup of G. For all $(n, h) \in G$ and $\left(k, e_{H}\right) \in N$, one has:

$$
\begin{aligned}
(n, h)\left(k, e_{H}\right)(n, h)^{-1} & =(n, h)\left(k, e_{H}\right)\left(\left[\psi\left(h^{-1}\right)\right]\left(n^{-1}\right), h^{-1}\right)=\left(n[\psi(h)](k), h e_{H}\right)\left(\left[\psi\left(h^{-1}\right)\right]\left(n^{-1}\right), h^{-1}\right) \\
& =\left(n[\psi(h)](k)\left[\psi(h) \psi\left(h^{-1}\right)\right]\left(n^{-1}\right), h h^{-1}\right)=\left(n[\psi(h)](k) n^{-1}, e_{H}\right) \in N .
\end{aligned}
$$

As such, we conclude that $N \triangleleft\left(N \rtimes_{\psi} H\right)$.

3. The Equivalence of the Inner and Outer Semi-Direct Products

In this section, we will prove the equivalence of both concepts. To do this, we must prove this relationship both ways.

3.1. All Inner Semi-Direct Products are Outer Semi-Direct Products

Let us consider the automorphism of N defined by $[\psi(h)](n)=h n h^{-1}$. We now define the map

$$
\begin{aligned}
\psi: H & \longrightarrow \operatorname{Aut}(N) \\
h & \longmapsto[\psi(h)](n) .
\end{aligned}
$$

Let us now prove that ψ is a homomorphism by proving $\left[\psi\left(h_{1}\right) \circ \psi\left(h_{2}\right)\right](n)=\left[\psi\left(h_{1} h_{2}\right)\right](n)$:

$$
\left[\psi\left(h_{1}\right) \circ \psi\left(h_{2}\right)\right](n)=\left[\psi\left(h_{1}\right)\right]\left(h_{2} n h_{2}^{-1}\right)=h_{1}\left(h_{2} n h_{2}^{-1}\right) h_{1}^{-1}=h_{1} h_{2} n h_{2}^{-1} h_{1}^{-1}=\left(h_{1} h_{2}\right) n\left(h_{1} h_{2}\right)^{-1}=\left[\psi\left(h_{1} h_{2}\right)\right](n) .
$$

Let us now define an map $\phi: G \rightarrow N \rtimes_{\psi} H$ defined by $\phi(g)=\phi(n h)=(n, h)$.
Due to condition 3) on N and H (all $g \in G$ has unique decomposition $g=n h$ for $n \in N$ and $h \in H$), ϕ is well-defined for all g, and from that we also have that ϕ is surjective.
Since $e_{N \rtimes_{\psi} H}=\left(e_{G}, e_{G}\right)$, we have that $\operatorname{Ker}(\phi)=\left\{e_{G}\right\}$, so we have that ϕ is injective (and thus bijective).
Finally, we prove that ϕ is a homomorphism by showing $\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right)$:

$$
\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\left(n_{1}, h_{1}\right)\left(n_{2}, h_{2}\right)=\left(n_{1}\left[\psi\left(h_{1}\right)\right]\left(n_{2}\right), h_{1} h_{2}\right)=\left(n_{1} h_{1} n_{2} h_{1}^{-1}, h_{1} h_{2}\right)=\phi\left(n_{1} h_{1} n_{2} h_{2}\right)=\phi\left(g_{1} g_{2}\right)
$$

Therefore, we have proven that ϕ is an isomorphism, so we conclude that $G \simeq N \rtimes_{\psi} H$

3.2. All Outer Semi-Direct Products are Inner Semi-Direct Products

Let us set $G=N \rtimes_{\psi} H$. Let us first prove that $G_{N}=\left\{\left(n, e_{H}\right) \mid n \in N\right\}$ and $G_{H}=\left\{\left(e_{N}, h\right) \mid h \in H\right\}$ are subgroups.
Let us first prove it for G_{N}. We have that $e_{N} \in N$, so $\left(e_{N}, e_{H}\right)=e_{G} \in G_{N}$. Then, we have for $n_{1}, n_{2}, n_{3} \in N$:

$$
\begin{aligned}
\left(\left(n_{1}, e_{H}\right)\left(n_{2}, e_{H}\right)\right)\left(n_{3}, e_{H}\right) & =\left(n_{1}\left[\psi\left(e_{H}\right)\right]\left(n_{2}\right), e_{H} e_{H}\right)\left(n_{3}, e_{H}\right)=\left(n_{1} n_{2}, e_{H}\right)\left(n_{3}, e_{H}\right) \\
& =\left(n_{1} n_{2}\left[\psi\left(e_{H}\right)\right]\left(n_{3}\right), e_{H} e_{H}\right)=\left(n_{1} n_{2} n_{3}, e_{H}\right) \\
& =\left(n_{1}, h_{1}\right)\left(n_{2} n_{3}, e_{H}\right)=\left(n_{1}, h_{1}\right)\left(\left(n_{2}, e_{H}\right)\left(n_{3}, e_{H}\right)\right)
\end{aligned}
$$

As such, we have proven associativity. Next, we prove the inverse condition:

$$
\begin{aligned}
& \left(n, e_{H}\right)\left(n^{-1}, e_{H}\right)=\left(n\left[\psi\left(e_{H}\right)\right]\left(n^{-1}\right), e_{H} e_{H}\right)=\left(n n^{-1}, e_{H}\right)=\left(e_{N}, e_{H}\right)=e_{G} \\
& \left(n^{-1}, e_{H}\right)\left(n, e_{H}\right)=\left(n^{-1}\left[\psi\left(e_{H}\right)\right](n), e_{H} e_{H}\right)=\left(n^{-1} n, e_{H}\right)=\left(e_{N}, e_{H}\right)=e_{G}
\end{aligned}
$$

Therefore, we conclude that G_{N} is a subgroup of G.
For G_{H}, observe that since $e_{H} \in H,\left(e_{N}, e_{H}\right)=e_{G} \in G_{H}$. Then, for $h_{1}, h_{2}, h_{3} \in H$,

$$
\begin{aligned}
\left(\left(e_{N}, h_{1}\right)\left(e_{N}, h_{2}\right)\right)\left(e_{N}, h_{3}\right) & =\left(e_{N}\left[\psi\left(h_{1}\right)\right]\left(e_{N}\right), h_{1} h_{2}\right)\left(e_{N}, h_{3}\right)=\left(e_{N}, h_{1} h_{2} h_{3}\right) \\
& =\left(e_{N}\left[\psi\left(h_{1}\right)\right]\left(e_{N}\right), h_{1} h_{2} h_{3}\right)=\left(e_{N}, h_{1}\right)\left(e_{N}, h_{2} h_{3}\right) \\
& =\left(e_{N}, h_{1}\right)\left(e_{N}\left[\psi\left(h_{2}\right)\right]\left(e_{N}\right), h_{2} h_{3}\right)=\left(e_{N}, h_{1}\right)\left(\left(e_{N}, h_{2}\right)\left(e_{N}, h_{3}\right)\right)
\end{aligned}
$$

As such, we have proven associativity. Next, we prove the inverse condition:

$$
\begin{aligned}
& \left(e_{N}, h\right)\left(e_{N}, h^{-1}\right)=\left(e_{N}[\psi(h)]\left(e_{N}\right), h h^{-1}\right)=\left(e_{N}, e_{H}\right)=e_{G}, \\
& \left(e_{N}, h^{-1}\right)\left(e_{N}, h\right)=\left(e_{N}\left[\psi\left(h^{-1}\right)\right]\left(e_{N}\right), h^{-1} h\right)=\left(e_{N}, e_{H}\right)=e_{G}
\end{aligned}
$$

As such, we conclude that G_{H} is also a subgroup of G.
All we have to do is to prove that G_{N} and G_{H} satisfy the three conditions on inner semi-direct products stipulated above.
First, we prove that $G_{N} \triangleleft G$. Let $\left(k, e_{H}\right) \in G_{N}$ and $(n, h) \in G$. Then,

$$
\begin{aligned}
(n, h)\left(k, e_{H}\right)(n, h)^{-1} & =(n[\psi(h)](k), h)\left(\left[\psi\left(h^{-1}\right]\left(n^{-1}\right), h^{-1}\right)=\left(n[\psi(h)](k) \cdot\left[\psi(h) \circ \psi\left(h^{-1}\right)\right]\left(n^{-1}\right), h h^{-1}\right)\right. \\
& =\left(n[\psi(h)](k) \cdot\left[\psi\left(e_{H}\right)\right]\left(n^{-1}\right), e_{H}\right)=\left(n[\psi(h)](k) n^{-1}, e_{H}\right) \in G_{N} .
\end{aligned}
$$

Therefore, G_{N} is a normal subgroup of G.
Next, we observe that $G_{N} \cap G_{H}=\left\{e_{G}\right\}$. Finally, we observe that $\forall(n, h) \in G$:

$$
\left(n, e_{H}\right)\left(e_{N}, h\right)=\left(n\left[\psi\left(e_{H}\right)\right]\left(e_{N}\right), e_{H} h\right)=\left(n e_{N}, e_{H} h\right)=(n, h)=g .
$$

Observe that $\left(n, e_{H}\right) \in G_{N}$ and $\left(e_{N}, h\right) \in G_{H}$. Thus, the three conditions are fulfilled. As such, $G=G_{N} \rtimes G_{H}$.
Therefore, we conclude that the inner semi-direct product is equivalent to the outer semi-direct product.

