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On Inner and Outer Semi-Direct Products (Exercises 1.3.5, 1.3.7)

This report aims to prove the equivalence of the inner and outer semi-direct products. Both semi-direct products might
seem different on first glance. The concept of an inner semi-direct product is that if a group G has two subgroups N
and H with N ◁ G and meets a few conditions, then we say that the group G is an inner semi-direct product of the two
subgroups. In other words, we use our knowledge of the group and subgroups to say something about the relationship
between the group G and the two subgroups N and H.

On the other hand, the concept of the outer semi-direct product is to take two completely arbitrary groups and create a
new group. While there might be countless ways to merge two sets together, the challenge here is to find a binary oper-
ation (the group operation) and an unary operation (the inverse) such that the merged set along with the two operations
satisfy the three conditions of a group (and therefore forms a group).

1. Definition and uniqueness
A group G is called the inner semi-direct product of two of its subgroups N and H if they satisfy the following conditions:

1) N is a normal subgroup of G,

2) N ∩ H = {eG} with eG the identity element of G,

3) Each element g of G admits a decomposition g = nh with n ∈ N and h ∈ H.

If these three conditions are satisfied, we write G = N ⋊ H.

Proposition. Condition 2) above implies that the decomposition described in 3) is unique.

Proof. Let g ∈ G, n1, n2 ∈ N and h1, h2 ∈ G. Suppose that g = n1h1 = n2h2. Then one has

n2
−1n1h1 = h2 ⇐⇒ n−1

2 n1 = h2h−1
1 .

The left-hand side of the equation is an element of N, while the right hand-side of the equation belongs to H. As per
condition 2), the only element in common between N and H is eG. Thus, n−1

2 n1 = h2h−1
1 = eG. Thus, n1 = n2 and

h1 = h2, and we conclude that the decomposition of any element g is unique. □

On the other hand, the construction of the outer semi-direct product is more challenging. Let us have two arbitrary
groups N and H. Consider a map ψ : H → Aut(N), where Aut(N) is the group consisting of the set of all automorphisms
of N along with the usual map composition as the group operation. We then define the outer semi-direct product of N
and H as N ⋊ψ H as the set {(n, h) | n ∈ N, h ∈ H} with the (binary) operation

(n1, h1)(n2, h2) := (n1[ψ(h1)](n2), h1h2),

and the inverse (n, h)−1 = ([ψ(h−1)](n−1), h−1). We identify N with the set {(n, eH) | n ∈ N} and H with the set {(eN , h) |
h ∈ H}.

2. Proof that N ⋊ψ H is a Group and N ◁ (N ⋊ψ H)
To prove G = N ⋊ψ H is a group, we need to prove that G satisfies the three conditions of a group.

First, let us prove associativity. Let (n1, h1), (n2, h2), (n3, h3) ∈ N ⋊ψ H. Then,(
(n1, h1)(n2, h2)

)
(n3, h3) = (n1[ψ(h1)](n2), h1h2) (n3, h3)

= (n1[ψ(h1)](n2)[ψ(h1h2)](n3), h1h2h3)

(n1, h1)
(
(n2, h2)(n3, h3)

)
= (n1, h1) (n2[ψ(h2)](n3), h2h3)

= (n1[ψ(h1)](n2[ψ(h2)](n3)), h1h2h3)

= (n1[ψ(h1)](n2)[ψ(h1h2)](n3), h1h2h3) .
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We have made use of the fact that ψ(h) is an automorphism of N for all h ∈ H and [ψ(h1)ψ(h2)](n) = [ψ(h1h2)](n). Next,
we prove that eG = (eN , eH) is the identity element of G:

eG(n, h) = (eN , eH)(n, h) = (eN[ψ(eH)](n), eHh) = (eNn, h) = (n, h),
(n, h)eG = (n, h)(eN , eH) = (n[ψ(h)](eN), heH) = (neN , h) = (n, h).

Here, we have used the fact that [ψ(eH)](n) is the identity map on N, and any automorphism must map eN to eN itself.

Then, we prove that the inverse defined on N ⋊ψ H satisfies the inverse condition:

(n, h)(n, h)−1 = (n, h)([ψ(h−1)](n−1), h−1) =
(
n[ψ(h)ψ(h−1)](n−1), hh−1

)
=
(
n[ψ(eH)](n−1), eH

)
= (eN , eH),

(n, h)−1(n, h) = ([ψ(h−1)](n−1), h−1)(n, h) =
(
[ψ(h−1)](n−1)[ψ(h−1)](n), h−1h

)
=
(
[ψ(h−1)](eN), eH

)
= (eN , eH).

With these three conditions fulfilled, we have proven that G = N⋊ψH is a group. Next, we prove that N = {n, eH | n ∈ N}
is a normal subgroup of G. For all (n, h) ∈ G and (k, eH) ∈ N, one has:

(n, h)(k, eH)(n, h)−1 = (n, h)(k, eH)([ψ(h−1)](n−1), h−1) = (n[ψ(h)](k), heH)
(
[ψ(h−1)](n−1), h−1

)
=
(
n[ψ(h)](k)[ψ(h)ψ(h−1)](n−1), hh−1

)
=
(
n[ψ(h)](k)n−1, eH

)
∈ N .

As such, we conclude that N ◁ (N ⋊ψ H).

3. The Equivalence of the Inner and Outer Semi-Direct Products
In this section, we will prove the equivalence of both concepts. To do this, we must prove this relationship both ways.

3.1. All Inner Semi-Direct Products are Outer Semi-Direct Products

Let us consider the automorphism of N defined by [ψ(h)](n) = hnh−1. We now define the map

ψ : H −→ Aut(N)
h 7−→ [ψ(h)](n).

Let us now prove that ψ is a homomorphism by proving [ψ(h1) ◦ ψ(h2)](n) = [ψ(h1h2)](n):

[ψ(h1) ◦ ψ(h2)](n) = [ψ(h1)](h2nh−1
2 ) = h1(h2nh−1

2 )h−1
1 = h1h2nh−1

2 h−1
1 = (h1h2)n(h1h2)−1 = [ψ(h1h2)](n).

Let us now define an map ϕ : G → N ⋊ψ H defined by ϕ(g) = ϕ(nh) = (n, h).

Due to condition 3) on N and H (all g ∈ G has unique decomposition g = nh for n ∈ N and h ∈ H), ϕ is well-defined for
all g, and from that we also have that ϕ is surjective.

Since eN⋊ψH = (eG, eG), we have that Ker(ϕ) = {eG}, so we have that ϕ is injective (and thus bijective).

Finally, we prove that ϕ is a homomorphism by showing ϕ(g1)ϕ(g2) = ϕ(g1g2):

ϕ(g1)ϕ(g2) = (n1, h1)(n2, h2) = (n1[ψ(h1)](n2), h1h2) = (n1h1n2h−1
1 , h1h2) = ϕ(n1h1n2h2) = ϕ(g1g2).

Therefore, we have proven that ϕ is an isomorphism, so we conclude that G ≃ N ⋊ψ H

3.2. All Outer Semi-Direct Products are Inner Semi-Direct Products

Let us set G = N ⋊ψ H. Let us first prove that GN = {(n, eH) | n ∈ N} and GH = {(eN , h) | h ∈ H} are subgroups.

Let us first prove it for GN . We have that eN ∈ N, so (eN , eH) = eG ∈ GN . Then, we have for n1, n2, n3 ∈ N:(
(n1, eH)(n2, eH)

)
(n3, eH) = (n1[ψ(eH)](n2), eHeH)(n3, eH) = (n1n2, eH)(n3, eH)

= (n1n2[ψ(eH)](n3), eHeH) = (n1n2n3, eH)

= (n1, h1)(n2n3, eH) = (n1, h1)
(
(n2, eH)(n3, eH)

)
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As such, we have proven associativity. Next, we prove the inverse condition:

(n, eH)(n−1, eH) = (n[ψ(eH)](n−1), eHeH) = (nn−1, eH) = (eN , eH) = eG.

(n−1, eH)(n, eH) = (n−1[ψ(eH)](n), eHeH) = (n−1n, eH) = (eN , eH) = eG.

Therefore, we conclude that GN is a subgroup of G.

For GH , observe that since eH ∈ H, (eN , eH) = eG ∈ GH . Then, for h1, h2, h3 ∈ H,(
(eN , h1)(eN , h2)

)
(eN , h3) = (eN[ψ(h1)](eN), h1h2)(eN , h3) = (eN , h1h2h3)

= (eN[ψ(h1)](eN), h1h2h3) = (eN , h1)(eN , h2h3)

= (eN , h1)(eN[ψ(h2)](eN), h2h3) = (eN , h1)
(
(eN , h2)(eN , h3)

)
As such, we have proven associativity. Next, we prove the inverse condition:

(eN , h)(eN , h−1) = (eN[ψ(h)](eN), hh−1) = (eN , eH) = eG,

(eN , h−1)(eN , h) = (eN[ψ(h−1)](eN), h−1h) = (eN , eH) = eG.

As such, we conclude that GH is also a subgroup of G.

All we have to do is to prove that GN and GH satisfy the three conditions on inner semi-direct products stipulated above.

First, we prove that GN ◁G. Let (k, eH) ∈ GN and (n, h) ∈ G. Then,

(n, h)(k, eH)(n, h)−1 = (n[ψ(h)](k), h)
(
[ψ(h−1](n−1), h−1

)
=
(
n[ψ(h)](k) · [ψ(h) ◦ ψ(h−1)](n−1), hh−1

)
=
(
n[ψ(h)](k) · [ψ(eH)](n−1), eH

)
=
(
n[ψ(h)](k)n−1, eH

)
∈ GN .

Therefore, GN is a normal subgroup of G.

Next, we observe that GN ∩GH = {eG}. Finally, we observe that ∀(n, h) ∈ G:

(n, eH)(eN , h) = (n[ψ(eH)](eN), eHh) = (neN , eHh) = (n, h) = g.

Observe that (n, eH) ∈ GN and (eN , h) ∈ GH . Thus, the three conditions are fulfilled. As such, G = GN ⋊GH .

Therefore, we conclude that the inner semi-direct product is equivalent to the outer semi-direct product.
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