About the induced representation

NGUYEN Tue Tai / 062201848
January 25, 2023

Exercise 5.4.1.

Let G be a finite group, and let G_{0} be a subgroup of G. We also assume that (\mathcal{V}, U) is a finite dimensional representation of G_{0}, with $\operatorname{dim}(\mathcal{V})=n$. Check that the pair $(\mathcal{W}, \mathcal{U})$ given by

$$
\begin{gathered}
\mathcal{W}:=\left\{f: G \rightarrow \mathcal{V} \mid f\left(a a_{0}\right)=U\left(a_{0}^{-1}\right) f(a), \forall a \in G, a_{0} \in G_{0}\right\}, \\
{[\mathcal{U}(b) f](a):=f\left(b^{-1} a\right), \text { for every } a, b \in G,}
\end{gathered}
$$

define a representation of G in \mathcal{W}.

1. \mathcal{W} is a vector space

For $f, g \in \mathcal{W}$, scalar λ (in either \mathbb{R} or \mathbb{C}), $a \in G$, and $a_{0} \in G_{0}$, we have

$$
\begin{aligned}
& (f+g)\left(a a_{0}\right)=f\left(a a_{0}\right)+g\left(a a_{0}\right)=U\left(a_{0}^{-1}\right) f(a)+U\left(a_{0}^{-1}\right) g(a)=U\left(a_{0}^{-1}\right)(f(a)+g(a))=U\left(a_{0}^{-1}\right)(f+g)(a), \\
& (\lambda f)\left(a a_{0}\right)=\lambda f\left(a a_{0}\right)=\lambda\left(U\left(a_{0}^{-1}\right) f(a)\right)=U\left(a_{0}^{-1}\right)(\lambda f(a))=U\left(a_{0}^{-1}\right)(\lambda f)(a) .
\end{aligned}
$$

Hence, for every $f, g \in \mathcal{W}$ and every scalar λ

$$
\begin{gathered}
f+g \in \mathcal{W} \\
\lambda f \in \mathcal{W}
\end{gathered}
$$

Thus, \mathcal{W} is a vector space.

2. \mathcal{U} is a map from G to $\mathcal{L}(\mathcal{W})$

For $f \in \mathcal{W}, a, b \in G$, and $a_{0} \in G_{0}$, we have

$$
[\mathcal{U}(b) f]\left(a a_{0}\right)=f\left(b^{-1} a a_{0}\right)=U\left(a_{0}^{-1}\right) f\left(b^{-1} a\right)=U\left(a_{0}^{-1}\right)[\mathcal{U}(b) f](a) .
$$

Hence, $\mathcal{U}(b) f \in \mathcal{W}$ for every $f \in \mathcal{W}$, which implies that $\mathcal{U}(b)$ is a map from \mathcal{W} to \mathcal{W} for any $b \in G$.
Also, for $f, g \in \mathcal{W}$, scalar λ, and $a, b \in G$, we have

$$
\begin{aligned}
& {[\mathcal{U}(b)(f+g)](a)=(f+g)\left(b^{-1} a\right)=f\left(b^{-1} a\right)+g\left(b^{-1} a\right)=[\mathcal{U}(b) f](a)+[\mathcal{U}(b) g](a)=[\mathcal{U}(b) f+\mathcal{U}(b) g](a),} \\
& {[\mathcal{U}(b)(\lambda f)](a)=(\lambda f)\left(b^{-1} a\right)=\lambda f\left(b^{-1} a\right)=\lambda[\mathcal{U}(b) f](a)=[\lambda \mathcal{U}(b) f](a) .}
\end{aligned}
$$

Hence, for every $f, g \in \mathcal{W}$ and every scalar λ,

$$
\begin{aligned}
\mathcal{U}(b)(f+g) & =\mathcal{U}(b) f+\mathcal{U}(b) g \\
\mathcal{U}(b)(\lambda f) & =\lambda \mathcal{U}(b) f
\end{aligned}
$$

Thus, $\mathcal{U}(b)$ is a linear map on \mathcal{W} for any $b \in G$. Consequently, \mathcal{U} is a map from G to $\mathcal{L}(\mathcal{W})$.
3. $(\mathcal{W}, \mathcal{U})$ is a representation of G

For $f \in \mathcal{W}$ and $a, b, c \in G$, we have

$$
[\mathcal{U}(b c) f](a)=f\left((b c)^{-1} a\right)=f\left(\left(c^{-1} b^{-1}\right) a\right)=f\left(c^{-1}\left(b^{-1} a\right)\right)=[\mathcal{U}(c) f]\left(b^{-1} a\right)=[\mathcal{U}(b) \mathcal{U}(c) f](a) .
$$

Hence, $\mathcal{U}(b c) f=\mathcal{U}(b) \mathcal{U}(c) f$ for any $f \in \mathcal{W}$, and therefore, $\mathcal{U}(b c)=\mathcal{U}(b) \mathcal{U}(c)$ for any $b, c \in G$. Also, for the identity element $e \in G$, we have

$$
[\mathcal{U}(e) f](a)=f\left(e^{-1} a\right)=f(e a)=f(a), \quad \text { for every } a \in G .
$$

Thus, $\mathcal{U}(e) f=f$ for any $f \in \mathcal{W}$, or $\mathcal{U}(e)=\mathbb{1}$. As a result, $(\mathcal{W}, \mathcal{U})$ is a representation of G.

