The trace and the norm of the tensor product of linear operators
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Exercise 2.5.3
1. Consider Ay € B(H1) and As € B(Hs). If Hi and Ha are finit dimensional, then
Tr (Al X Ag) = TI‘(Al) TI‘(AQ)

Proof. Let {ej}; and {e}}, be orthonormal bases of H; and s, respectively. Then, the set {e] ® €3}, is an
orthonormal basis of H; ® Hs. Hence, we have

Tr (A1 ® Ag) =Y _(ej @€}, (A1 @ Ay) (e] ®€}))
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2. Show that || A1 ® Asll = ||A1]|||Az2]|.

Proof. For any f € Hi ® Ha, it can be represented as

F=Y Ailej®er),  with \j, € C.
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We can also write it in another form.
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Consider the norm of f.
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Consider the operator 1y, ® As. With the same calculation as above, we have
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From the definition of the norm of operators, we have ||A2f]2H < ||Az|| ||f]2H Hence, we have
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With similar calculation, we can also show that |41 @ 13, < ||41]].
Also, by using the property || AB|| < ||A||||B||, we have

A1 @ Ag|| = [[(A1 @ 191,) (131, © Ag)|| < [[A1 @ Lo, [|[| 130, @ Azf| < [[Asl]| A2l

Furthermore, let Hy C H1 ® Hs be the subset of all elements that can be expressed as fi1 ® fa, with f; € H;,
fo € Ho. Hence, we have
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On the other hand, we have

111 foll = V(i @ fas f1 @ fo) = V/{f1, f1) (o, Fo) = V{1, POV (Fas f2) = L1l fall-

Hence,
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Because || A1 f1]l/||f1]l and ||As f2]|/]| f2]] are positive real numbers, we have
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|A1 ® Ayl > sup [ALA ] sup | A2 f2]|
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Thus, we have already proved that [[A; ® Az| < [|A1]|[|[A2] and |[A; ® Azl > ||Ay]|||A2||, which implies that
[A1© A = [[A][[| Az]. m



