On characters of unitary and irreducible representations of a finite group SML - Groups and Their Representations

NGUYEN Tue Tai / 062201848

November 3, 2022

Exercise 2.4.5

Let (\mathcal{H}^k, U^k) and $(\mathcal{H}^\ell, U^\ell)$ be two unitary and irreducible representations of a finite group G, with respective characters denoted by χ^k and χ^ℓ . Then,

$$\frac{1}{|G|} \sum_{a \in G} \overline{\chi^k(a)} \chi^\ell(a) = \begin{cases} 1, & \text{if } (\mathcal{H}^k, U^k) \simeq (\mathcal{H}^\ell, U^\ell) \\ 0, & \text{otherwise} \end{cases}$$
(1)

Proof. When (\mathcal{H}^k, U^k) and $(\mathcal{H}^\ell, U^\ell)$ are identical or inequivalent, we have this equality

$$\frac{1}{|G|} \sum_{a \in G} U_{rs}^{\ell}(a) \overline{U_{ij}^{k}(a)} = \frac{1}{n_k} \delta_{k\ell} \delta_{sj} \delta_{ri}, \qquad \text{for } i, j \in \{1, \dots, n_k\} \text{ and } r, s \in \{1, \dots, n_\ell\}.$$

$$\tag{2}$$

Then, we have

$$\frac{1}{|G|} \sum_{a \in G} \overline{\chi^k(a)} \chi^\ell(a) = \frac{1}{|G|} \sum_{a \in G} \overline{\operatorname{Tr} (U^k(a))} \operatorname{Tr} \left(U^\ell(a) \right)$$
$$= \frac{1}{|G|} \sum_{a \in G} \sum_{i=1}^{n_k} U^k_{ii}(a) \sum_{j=1}^{n_\ell} U^\ell_{jj}(a)$$
$$= \sum_{i=1}^{n_k} \sum_{j=1}^{n_\ell} \frac{1}{|G|} \sum_{a \in G} \overline{U^k_{ii}(a)} U^\ell_{jj}(a)$$
$$= \sum_{i=1}^{n_k} \sum_{j=1}^{n_\ell} \frac{1}{n_k} \delta_{k\ell} \delta_{ji} \delta_{ji}$$
$$= \frac{1}{n_k} \delta_{k\ell} \min\{n_k, n_\ell\}$$

For the factor $1/n_k$, we can choose either n_k or n_ℓ because $\delta_{k\ell}$ on the right hand side of (2) is nonzero when $k = \ell$. Hence, we can choose it so that it cancels min $\{n_k, n_\ell\}$. Thus,

$$\frac{1}{|G|} \sum_{a \in G} \overline{\chi^k(a)} \chi^\ell(a) = \delta_{k\ell}.$$

In addition, consider the case that (\mathcal{H}^k, U^k) and $(\mathcal{H}^\ell, U^\ell)$ are not identical but equivalent. In that case, $\chi^k = \chi^\ell$, which means that the sum on the right hand side of (1) when $(\mathcal{H}^k, U^k) \simeq (\mathcal{H}^\ell, U^\ell)$ and $(\mathcal{H}^k, U^k) \neq (\mathcal{H}^\ell, U^\ell)$ is the same as when $(\mathcal{H}^k, U^k) = (\mathcal{H}^\ell, U^\ell)$. Hence,

$$\frac{1}{|G|} \sum_{a \in G} \overline{\chi^k(a)} \chi^\ell(a) = \begin{cases} 1, & \text{if } (\mathcal{H}^k, U^k) \simeq (\mathcal{H}^\ell, U^\ell) \\ 0, & \text{otherwise} \end{cases} \quad Q.E.D.$$