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1 Selection rules

Let us summarize the main ideas of the selection rule. The definitions are given in [1] and
the proof is given in [2]. Also, for simplicity, we will work with finite groups and finite
dimensional representations.

For a unitary representation (H, U), we can decompose it into irreducible representations

H =
⊕

νjH(j) , U =
⊕

νjU
(j),

and we also have the representation (B(H),U) which can be decomposed into irreducible
representations

B(H) =
⊕

µlL(l) , U =
⊕

µlU (l).

Focusing on the equivalent class η(l) containing (L(l),U (l)), there exists an irreducible repre-
sentation (H(l), U (l)), and we denote the similarity transformation between them by

τl : H(l) → L(l).

Then, for any fl ∈ H(l), fk ∈ H(k)
m where m ∈ {1, ..., νk}, and fj ∈ H(j)

n where n ∈ {1, ..., νj},
one has

⟨fk, τl(fl)fj⟩ = 0

unless there exists a representation of class η(k) in the decomposition of the representation
(H(l) ⊗H(j), U (l) ⊗ U (j)).

2 Clebsch-Gordon coefficients

Consider two general representations (H(l), U (l)) and (H(j), U (j)) where we denote the basis

of H(l) by {e(l)r }r and H(j) by {e(j)s }s. If the representation is from a single group G, the
representation (H(l) ⊗ H(j), U (l) ⊗ U (j)) is not irreducible in general, meaning that we can
decompose it into irreducible representation

H(l) ⊗H(j) =
⊕

αmH(m) =
⊕

H(m,n) , U (l) ⊗ U (j) =
⊕

αmU
(m) =

⊕
U (m,n),
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where n ∈ {1, ..., αm}. Denote a basis for H(m,n) by {e(m,n)
o }o, then we can write this basis

in terms of the uncoupled basis {e(l)r ⊗ e
(j)
s }r,s by

e(m,n)
o =

∑
r,s

C(mno; lj)rs e
(l)
r ⊗ e(j)s

1.

The coefficients C(mno; lj)rs are called the Clebsch-Gordon coefficients. With its application
in quantum mechanics, the Dirac notation is often used, in which

|mno⟩⊕ := e(m,n)
o , |lr, js⟩⊗ := e(l)r ⊗ e(j)s ,

C(mno; lj)rs := ⟨lr, js|mno⟩ , C(mno; lj)rs := ⟨mno|lr, js⟩

where we have denoted ⊕ and ⊗ to distinguish between the bases. Then, the equation reads

|mno⟩⊕ =
∑
r,s

|lr, js⟩⊗ ⟨lr, js|mno⟩.

Let us use the Dirac notation for the Clebsch-Gordon coefficients only. This is because by
using the orthonormality of {e(l)r ⊗ e

(j)
s }r,s, we get

⟨e(l)p ⊗ e(j)q , e(m,n)
o ⟩ = C(mno; lj)pq = ⟨lp, jq|mno⟩,

so the Dirac notation gives us a natural way to write down the coefficients.

Now, let us study some properties of the Clebsch-Gordon coefficients, even though we
might not use all of them. We first define a linear operator on H = H(l) ⊗H(j) =

⊕
H(m,n)

Imno : H → H,

f 7→ ⟨e(m,n)
o , f⟩ e(m,n)

o .

In Dirac notation, we write this as Imno = |mno⟩⟨mno|. By orthonormality, we have

Imno e
(m′n′)
o′ = ⟨e(m,n)

o , e
(m′n′)
o′ ⟩ e(m,n)

o = δmm′δnn′δoo′ e
(m,n)
o .

Then, if we define

I⊕ : H → H,

f 7→
∑
m,n,o

Imno f,

its action on the basis {e(m
′,n′)

o′ }m′,n′,o′ of H is given by

I⊕e
(m′n′)
o′ =

∑
m,n,o

δmm′δnn′δoo′ e
(m,n)
o = e

(m′n′)
o′ ,

1The notation (m,n) also helps us differentiate between the basis with respect to
⊕

H(m,n) and that with
respect to H(l) ⊗H(j).
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meaning that I⊕ acts like the identity operator on H. We can apply this result to the basis
with respect to H(l) ⊗H(j) as follows

⟨e(l)p ⊗ e(j)q , e(l)r ⊗ e(j)s ⟩ = ⟨e(l)p ⊗ e(j)q , I⊕ e(l)r ⊗ e(j)s ⟩

=
∑
m,n,o

⟨e(l)p ⊗ e(j)q , e(m,n)
o ⟩⟨e(m,n)

o , e(l)r ⊗ e(j)s ⟩

=
∑
m,n,o

⟨lp, jq|mno⟩⟨mno|lr, js⟩,

but since ⟨e(l)p ⊗ e
(j)
q , e

(l)
r ⊗ e

(j)
s ⟩ = δprδqs, we get∑
m,n,o

⟨lp, jq|mno⟩⟨mno|lr, js⟩ = δprδqs. (1)

Similarly, we can define the following operators

Ilr,js : H → H,

f 7→ ⟨e(l)r ⊗ e(j)s , f⟩ e(l)r ⊗ e(j)s ,

I⊗ : H → H,

f 7→
∑
r,s

Ilr,js f = f,

then using the similar procedure for ⟨e(m,n)
o , e

(m′,n′)
o′ ⟩, we get∑

r,s

⟨mno|lr, js⟩⟨lr, js|m′n′o′⟩ = δmm′δnn′δoo′ . (2)

We will mainly deal with unitary representation so let U (l) and U (j) be unitary operators.
We now show that U = U (l) ⊗ U (j) is also unitary in H as defined previously. For brevity,
we will omit the group element a from U(a). Recall that U is unitary if for any f, g ∈ H,
one has

⟨Uf, Ug⟩ = ⟨f, g⟩

Due to the linearity of the map and the inner product, it is sufficient to consider the basis
{e(l)r ⊗ e

(j)
s }r,s, i.e., for arbitrary p, q, r, s,〈
U(e(l)p ⊗ e(j)q ), U(e(l)r ⊗ e(j)s )

〉
=

〈
(U (l)e(l)p )⊗ (U (j)e(j)q ), (U (l)e(l)r )⊗ (U (j)e(j)s )

〉
= ⟨U (l)e(l)p , U (l)e(l)r ⟩ ⟨U (j)e(j)q , U (j)e(j)s ⟩
= ⟨e(l)p , e(l)r ⟩ ⟨e(j)q , e(j)s ⟩
= ⟨e(l)p ⊗ e(j)q , e(l)r ⊗ e(j)s ⟩,

where we have used unitary property of U (l) and U (j) at the third line. Thus, U is indeed
unitary. The basis {e(m,n)

o }m,n,o is given by a linear combination of the uncoupled basis so
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the result still holds even if we consider the new basis. Using I⊕ and the fact that U (m,n)

only acts on H(m,n), one has

U(e(l)r ⊗ e(j)s ) = I⊕U
(
I⊕(e

(l)
r ⊗ e(j)s )

)
=

∑
m,n,o,
m′,n′,o′

⟨e(m,n)
o , e(l)r ⊗ e(j)s ⟩

〈
e
(m′,n′)
o′ , U

(
e(m,n)
o )

〉
e
(m′,n′)
o′

=
∑
m,n,o,
m′,n′,o′

⟨mno|lr, js⟩ δmm′δnn′U
(m,n)
o′o e

(m′,n′)
o′

=
∑

m,n,o,o′

⟨mno|lr, js⟩ U (m,n)
o′o e

(m,n)
o′ .

Using the expansion of e
(m,n)
o′ in terms of {e(l)u ⊗ e

(j)
v }u,v,

U(e(l)r ⊗ e(j)s ) =
∑

m,n,o,o′,
u,v

⟨mno|lr, js⟩ ⟨lu, jv|mno′⟩ U (m,n)
o′o e(l)u ⊗ e(j)v .

Then, take the inner product with e
(l)
p ⊗ e

(j)
q〈

e(l)p ⊗ e(j)q , U(e(l)r ⊗ e(j)s )
〉
=

∑
m,n,o,o′,

u,v

⟨mno|lr, js⟩ ⟨lu, jv|mno′⟩ ⟨e(l)p ⊗ e(j)q , e(l)u ⊗ e(j)v ⟩ U (m,n)
o′o

=
∑

m,n,o,o′,
u,v

⟨mno|lr, js⟩ ⟨lu, jv|mno′⟩ δpuδqvU (m,n)
o′o

=
∑

m,n,o,o′

⟨mno|lr, js⟩ ⟨lp, jq|mno′⟩ U (m,n)
o′o ,

and by using the matrix elements of U (l) and U (j), we get

U (l)
pr U

(j)
qs =

∑
m,n,o,o′

⟨mno|lr, js⟩ ⟨lp, jq|mno′⟩ U (m,n)
o′o .

From the lecture, if we denote dim(H(m,n)) = dm, the orthogonality relation gives

1

|G|
∑
a∈G

U
(m′,n′)
ρ′ρ (a) U

(m,n)
o′o (a) =

1

dm
δmm′δnn′δo′ρ′δoρ.

Thus,

1

|G|
∑
a∈G

U
(m′,n′)
ρ′ρ (a) U (l)

pr (a) U
(j)
qs (a) =

1

dm

∑
m,n,o,o′

⟨mno|lr, js⟩ ⟨lp, jq|mno′⟩ δmm′δnn′δo′ρ′δoρ

=
1

dm′
⟨m′n′ρ|lr, js⟩⟨lp, jq|m′n′ρ′⟩.

We can reindex m′ → m, n′ → n, then we have

1

|G|
∑
a∈G

U
(m,n)
ρ′ρ (a) U (l)

pr (a) U
(j)
qs (a) =

1

dm
⟨mnρ|lr, js⟩⟨lp, jq|mnρ′⟩. (3)
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3 Wigner-Eckart theorem

Let us define H(l) and H(j) in section 2 to be the same as that from section 1. Assume that
there exists a representation of class η(k) in the decomposition of H(l)⊗H(j). In other words,
there exists (m,n) in the decomposition

H(l) ⊗H(j) =
⊕

αmH(m) =
⊕

H(m,n)

such that η(m,n) = η(k). Then, it is possible to calculate the inner product given in section 1,
and the result is called the Wigner-Eckart theorem. Because of the linearity of the maps in
the expression, it is sufficient to consider the bases {e(k)o }o, {e(l)r }r, {e(j)s }s of H(k),H(l),H(j),
respectively. We will omit the group element a for now, then one has〈

e(k)o , τl(e
(l)
r )e(j)s

〉
=

〈
Ue(k)o , Uτl(e

(l)
r )e(j)s

〉
(by unitary)

=
〈
U (k)e(k)o , Uτl(e

(l)
r )U−1Ue(j)s

〉
(adding I = U−1U)

=
〈
U (k)e(k)o , τl(U

(l)e(l)r )U (j)e(j)s

〉
(by definition).

By adding the appropriate identity operator and using orthonormality,

U (k)e(k)o = IU (k)e(k)o

=
∑
k′,o′

⟨e(k
′)

o′ , U (k)e(k)o ⟩e(k
′)

o′

=
∑
k′,o′

δk′kU
(k)
o′o e

(k′)
o′

=
∑
o′

U
(k)
o′o e

(k)
o′ ,

τl(U
(l)e(l)r ) = τl(IU

(l)e(l)r )

=
∑
l′,r′

⟨e(l
′)

r′ , U (l)e(l)r ⟩ τl(e(l
′)

r′ )

=
∑
l′,r′

δl′lU
(l)
r′rτl(e

(l′)
r′ )

=
∑
r′

U
(l)
r′rτl(e

(l)
r′ )

U (j)e(j)s = IU (j)e(j)s

=
∑
j′,s′

⟨e(j
′)

s′ , U (j)e(j)s ⟩e(j
′)

s′

=
∑
j′,s′

δj′jU
(j)
s′s e

(j′)
s′

=
∑
s′

U
(j)
s′s e

(j)
s′ .
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Thus, we get 〈
e(k)o , τl(e

(l)
r )e(j)s

〉
=

∑
r′,s′,o′

U
(k)
o′o U

(l)
r′r U

(j)
s′s

〈
e
(k)
o′ , τl(e

(l)
r′ )e

(j)
s′

〉
.

The left-hand side does not depend on the group element, so we can write〈
e(k)o , τl(e

(l)
r )e(j)s

〉
=

1

|G|
∑
a∈G

〈
e(k)o , τl(e

(l)
r )e(j)s

〉
,

then by using equation (3), one has〈
e(k)o , τl(e

(l)
r )e(j)s

〉
=

1

|G|
∑
r′,s′,o′

∑
a∈G

U
(k)
o′o (a) U

(l)
r′r(a) U

(j)
s′s (a)

〈
e
(k)
o′ , τl(e

(l)
r′ )e

(j)
s′

〉
=

1

dk

∑
r′,s′,o′

⟨ko|lr, js⟩⟨lr′, js′|ko′⟩
〈
e
(k)
o′ , τl(e

(l)
r′ )e

(j)
s′

〉
.

Equivalently, 〈
e(k)o , τl(e

(l)
r )e(j)s

〉
= ⟨ko|lr, js⟩ T (k, j, l), (4)

where

T (k, j, l) =
1

dk

∑
r′,s′,o′

⟨lr′, js′|ko′⟩
〈
e
(k)
o′ , τl(e

(l)
r′ )e

(j)
s′

〉
.

The significant of this result is that we can split the inner product into the Clebsch-Gordon
coefficient and a term depending on k, j, l alone (and not on the basis of the invariant
subspace). In Dirac notation,〈

e(k)o , τl(e
(l)
r )e(j)s

〉
:= ⟨ko|τ (l)r |js⟩ , T (k, j, l) := ⟨k∥τ (l)∥j⟩.

Often, ⟨k∥τ (l)∥j⟩ is called the reduced matrix element. Equation (5) then reads

⟨ko|τ (l)r |js⟩ = ⟨ko|lr, js⟩⟨k∥τ (l)∥j⟩,

where

⟨k∥τ (l)∥j⟩ = 1

dk

∑
r′,s′,o′

⟨lr′, js′|ko′⟩⟨ko′|τ (l)r′ |js
′⟩.

4 Reference

[1] Groups and their representations, lecture notes by S. Richard.
[2] Proof of the selection rule, report by Y. Li.
[3] Theorie des groupes pour la physique, lecture notes by W. Amrein.

6

https://www.math.nagoya-u.ac.jp/~richard/teaching/f2022/Groups.pdf
https://www.math.nagoya-u.ac.jp/~richard/teaching/f2022/SML_Yucheng_4.pdf

	Selection rules
	Clebsch-Gordon coefficients
	Wigner-Eckart theorem
	Reference

