On the Wigner-Eckart Theorem

Nguyen Duc Thanh

(Fall 2022)

1 Selection rules

Let us summarize the main ideas of the selection rule. The definitions are given in [1] and the proof is given in [2]. Also, for simplicity, we will work with finite groups and finite dimensional representations.

For a unitary representation (\mathcal{H}, U), we can decompose it into irreducible representations

$$
\mathcal{H}=\bigoplus \nu_{j} \mathcal{H}^{(j)} \quad, \quad U=\bigoplus \nu_{j} U^{(j)}
$$

and we also have the representation $(\mathcal{B}(\mathcal{H}), \mathcal{U})$ which can be decomposed into irreducible representations

$$
\mathcal{B}(\mathcal{H})=\bigoplus \mu_{l} \mathcal{L}^{(l)} \quad, \quad \mathcal{U}=\bigoplus \mu_{l} \mathcal{U}^{(l)}
$$

Focusing on the equivalent class $\eta^{(l)}$ containing $\left(\mathcal{L}^{(l)}, \mathcal{U}^{(l)}\right)$, there exists an irreducible representation $\left(\mathcal{H}^{(l)}, U^{(l)}\right)$, and we denote the similarity transformation between them by

$$
\tau_{l}: \mathcal{H}^{(l)} \rightarrow \mathcal{L}^{(l)}
$$

Then, for any $f_{l} \in \mathcal{H}^{(l)}, f_{k} \in \mathcal{H}_{m}^{(k)}$ where $m \in\left\{1, \ldots, \nu_{k}\right\}$, and $f_{j} \in \mathcal{H}_{n}^{(j)}$ where $n \in\left\{1, \ldots, \nu_{j}\right\}$, one has

$$
\left\langle f_{k}, \tau_{l}\left(f_{l}\right) f_{j}\right\rangle=0
$$

unless there exists a representation of class $\eta^{(k)}$ in the decomposition of the representation $\left(\mathcal{H}^{(l)} \otimes \mathcal{H}^{(j)}, U^{(l)} \otimes U^{(j)}\right)$.

2 Clebsch-Gordon coefficients

Consider two general representations $\left(\mathcal{H}^{(l)}, U^{(l)}\right)$ and $\left(\mathcal{H}^{(j)}, U^{(j)}\right)$ where we denote the basis of $\mathcal{H}^{(l)}$ by $\left\{e_{r}^{(l)}\right\}_{r}$ and $\mathcal{H}^{(j)}$ by $\left\{e_{s}^{(j)}\right\}_{s}$. If the representation is from a single group G, the representation $\left(\mathcal{H}^{(l)} \otimes \mathcal{H}^{(j)}, U^{(l)} \otimes U^{(j)}\right)$ is not irreducible in general, meaning that we can decompose it into irreducible representation

$$
\mathcal{H}^{(l)} \otimes \mathcal{H}^{(j)}=\bigoplus \alpha_{m} \mathcal{H}^{(m)}=\bigoplus \mathcal{H}^{(m, n)} \quad, \quad U^{(l)} \otimes U^{(j)}=\bigoplus \alpha_{m} U^{(m)}=\bigoplus U^{(m, n)}
$$

where $n \in\left\{1, \ldots, \alpha_{m}\right\}$. Denote a basis for $\mathcal{H}^{(m, n)}$ by $\left\{e_{o}^{(m, n)}\right\}_{o}$, then we can write this basis in terms of the uncoupled basis $\left\{e_{r}^{(l)} \otimes e_{s}^{(j)}\right\}_{r, s}$ by

$$
e_{o}^{(m, n)}=\sum_{r, s} C(m n o ; l j)_{r s} e_{r}^{(l)} \otimes e_{s}^{(j)}
$$

The coefficients $C(m n o ; l j)_{r s}$ are called the Clebsch-Gordon coefficients. With its application in quantum mechanics, the Dirac notation is often used, in which

$$
\begin{gathered}
|m n o\rangle_{\oplus}:=e_{o}^{(m, n)} \quad, \quad|l r, j s\rangle_{\otimes}:=e_{r}^{(l)} \otimes e_{s}^{(j)}, \\
C(m n o ; l j)_{r s}:=\langle l r, j s \mid m n o\rangle \quad, \quad \overline{C(m n o ; l j)_{r s}}:=\langle m n o \mid l r, j s\rangle
\end{gathered}
$$

where we have denoted \oplus and \otimes to distinguish between the bases. Then, the equation reads

$$
|m n o\rangle_{\oplus}=\sum_{r, s}|l r, j s\rangle_{\otimes}\langle l r, j s \mid m n o\rangle .
$$

Let us use the Dirac notation for the Clebsch-Gordon coefficients only. This is because by using the orthonormality of $\left\{e_{r}^{(l)} \otimes e_{s}^{(j)}\right\}_{r, s}$, we get

$$
\left\langle e_{p}^{(l)} \otimes e_{q}^{(j)}, e_{o}^{(m, n)}\right\rangle=C(m n o ; l j)_{p q}=\langle l p, j q \mid m n o\rangle
$$

so the Dirac notation gives us a natural way to write down the coefficients.
Now, let us study some properties of the Clebsch-Gordon coefficients, even though we might not use all of them. We first define a linear operator on $\mathcal{H}=\mathcal{H}^{(l)} \otimes \mathcal{H}^{(j)}=\bigoplus \mathcal{H}^{(m, n)}$

$$
\begin{aligned}
I_{m n o}: & \mathcal{H} \\
& \rightarrow \mathcal{H} \\
& f \mapsto\left\langle e_{o}^{(m, n)}, f\right\rangle e_{o}^{(m, n)}
\end{aligned}
$$

In Dirac notation, we write this as $I_{m n o}=|m n o\rangle\langle m n o|$. By orthonormality, we have

$$
I_{m n o} e_{o^{\prime}}^{\left(m^{\prime} n^{\prime}\right)}=\left\langle e_{o}^{(m, n)}, e_{o^{\prime}}^{\left(m^{\prime} n^{\prime}\right)}\right\rangle e_{o}^{(m, n)}=\delta_{m m^{\prime}} \delta_{n n^{\prime}} \delta_{o o^{\prime}} e_{o}^{(m, n)}
$$

Then, if we define

$$
\begin{aligned}
I_{\oplus}: \mathcal{H} & \rightarrow \mathcal{H} \\
f & \mapsto \sum_{m, n, o} I_{m n o} f
\end{aligned}
$$

its action on the basis $\left\{e_{o^{\prime}}^{\left(m^{\prime}, n^{\prime}\right)}\right\}_{m^{\prime}, n^{\prime}, o^{\prime}}$ of \mathcal{H} is given by

$$
I_{\oplus} e_{o^{\prime}}^{\left(m^{\prime} n^{\prime}\right)}=\sum_{m, n, o} \delta_{m m^{\prime}} \delta_{n n^{\prime}} \delta_{o o^{\prime}} e_{o}^{(m, n)}=e_{o^{\prime}}^{\left(m^{\prime} n^{\prime}\right)}
$$

[^0]meaning that I_{\oplus} acts like the identity operator on \mathcal{H}. We can apply this result to the basis with respect to $\mathcal{H}^{(l)} \otimes \mathcal{H}^{(j)}$ as follows
\[

$$
\begin{aligned}
\left\langle e_{p}^{(l)} \otimes e_{q}^{(j)}, e_{r}^{(l)} \otimes e_{s}^{(j)}\right\rangle & =\left\langle e_{p}^{(l)} \otimes e_{q}^{(j)}, I_{\oplus} e_{r}^{(l)} \otimes e_{s}^{(j)}\right\rangle \\
& =\sum_{m, n, o}\left\langle e_{p}^{(l)} \otimes e_{q}^{(j)}, e_{o}^{(m, n)}\right\rangle\left\langle e_{o}^{(m, n)}, e_{r}^{(l)} \otimes e_{s}^{(j)}\right\rangle \\
& =\sum_{m, n, o}\langle l p, j q \mid m n o\rangle\langle m n o \mid l r, j s\rangle,
\end{aligned}
$$
\]

but since $\left\langle e_{p}^{(l)} \otimes e_{q}^{(j)}, e_{r}^{(l)} \otimes e_{s}^{(j)}\right\rangle=\delta_{p r} \delta_{q s}$, we get

$$
\begin{equation*}
\sum_{m, n, o}\langle l p, j q \mid m n o\rangle\langle m n o \mid l r, j s\rangle=\delta_{p r} \delta_{q s} \tag{1}
\end{equation*}
$$

Similarly, we can define the following operators

$$
\begin{aligned}
& I_{l r, j s}: \mathcal{H} \\
& f \rightarrow \mathcal{H}, \\
& I_{\otimes}: \mathcal{H} \\
& \rightarrow \mathcal{H} \\
&\left.f \mapsto e_{r}^{(l)} \otimes e_{s}^{(j)}, f\right\rangle e_{r}^{(l)} \otimes e_{s}^{(j)} \\
& I_{l r, j s}
\end{aligned},
$$

then using the similar procedure for $\left\langle e_{o}^{(m, n)}, e_{o^{\prime}}^{\left(m^{\prime}, n^{\prime}\right)}\right\rangle$, we get

$$
\begin{equation*}
\sum_{r, s}\langle m n o \mid l r, j s\rangle\left\langle l r, j s \mid m^{\prime} n^{\prime} o^{\prime}\right\rangle=\delta_{m m^{\prime}} \delta_{n n^{\prime}} \delta_{o o^{\prime}} \tag{2}
\end{equation*}
$$

We will mainly deal with unitary representation so let $U^{(l)}$ and $U^{(j)}$ be unitary operators. We now show that $U=U^{(l)} \otimes U^{(j)}$ is also unitary in \mathcal{H} as defined previously. For brevity, we will omit the group element a from $U(a)$. Recall that U is unitary if for any $f, g \in \mathcal{H}$, one has

$$
\langle U f, U g\rangle=\langle f, g\rangle
$$

Due to the linearity of the map and the inner product, it is sufficient to consider the basis $\left\{e_{r}^{(l)} \otimes e_{s}^{(j)}\right\}_{r, s}$, i.e., for arbitrary p, q, r, s,

$$
\begin{aligned}
\left\langle U\left(e_{p}^{(l)} \otimes e_{q}^{(j)}\right), U\left(e_{r}^{(l)} \otimes e_{s}^{(j)}\right)\right\rangle & =\left\langle\left(U^{(l)} e_{p}^{(l)}\right) \otimes\left(U^{(j)} e_{q}^{(j)}\right),\left(U^{(l)} e_{r}^{(l)}\right) \otimes\left(U^{(j)} e_{s}^{(j)}\right)\right\rangle \\
& =\left\langle U^{(l)} e_{p}^{(l)}, U^{(l)} e_{r}^{(l)}\right\rangle\left\langle U^{(j)} e_{q}^{(j)}, U^{(j)} e_{s}^{(j)}\right\rangle \\
& =\left\langle e_{p}^{(l)}, e_{r}^{(l)}\right\rangle\left\langle e_{q}^{(j)}, e_{s}^{(j)}\right\rangle \\
& =\left\langle e_{p}^{(l)} \otimes e_{q}^{(j)}, e_{r}^{(l)} \otimes e_{s}^{(j)}\right\rangle,
\end{aligned}
$$

where we have used unitary property of $U^{(l)}$ and $U^{(j)}$ at the third line. Thus, U is indeed unitary. The basis $\left\{e_{o}^{(m, n)}\right\}_{m, n, o}$ is given by a linear combination of the uncoupled basis so
the result still holds even if we consider the new basis. Using I_{\oplus} and the fact that $U^{(m, n)}$ only acts on $\mathcal{H}^{(m, n)}$, one has

$$
\begin{aligned}
U\left(e_{r}^{(l)} \otimes e_{s}^{(j)}\right) & =I_{\oplus} U\left(I_{\oplus}\left(e_{r}^{(l)} \otimes e_{s}^{(j)}\right)\right) \\
& =\sum_{\substack{m, n, o, m^{\prime}, n^{\prime}, o^{\prime}}}\left\langle e_{o}^{(m, n)}, e_{r}^{(l)} \otimes e_{s}^{(j)}\right\rangle\left\langle e_{o^{\prime}}^{\left(m^{\prime}, n^{\prime}\right)}, U\left(e_{o}^{(m, n)}\right)\right\rangle e_{o^{\prime}}^{\left(m^{\prime}, n^{\prime}\right)} \\
& =\sum_{\substack{m, n, o \\
m^{\prime}, n^{\prime}, o^{\prime}}}\langle m n o \mid l r, j s\rangle \delta_{m m^{\prime}} \delta_{n n^{\prime}} U_{o^{\prime} o}^{(m, n)} e_{o^{\prime}}^{\left(m^{\prime}, n^{\prime}\right)} \\
& =\sum_{m, n, o, o^{\prime}}\langle m n o \mid l r, j s\rangle U_{o^{\prime} o}^{(m, n)} e_{o^{\prime}}^{(m, n)} .
\end{aligned}
$$

Using the expansion of $e_{o^{\prime}}^{(m, n)}$ in terms of $\left\{e_{u}^{(l)} \otimes e_{v}^{(j)}\right\}_{u, v}$,

$$
U\left(e_{r}^{(l)} \otimes e_{s}^{(j)}\right)=\sum_{\substack{m, n, o, o^{\prime}, u, v^{\prime}}}\langle m n o \mid l r, j s\rangle\left\langle l u, j v \mid m n o^{\prime}\right\rangle U_{o^{\prime} o}^{(m, n)} e_{u}^{(l)} \otimes e_{v}^{(j)}
$$

Then, take the inner product with $e_{p}^{(l)} \otimes e_{q}^{(j)}$

$$
\begin{aligned}
\left\langle e_{p}^{(l)} \otimes e_{q}^{(j)}, U\left(e_{r}^{(l)} \otimes e_{s}^{(j)}\right)\right\rangle & =\sum_{\substack{m, n, o, o^{\prime}, u, v}}\langle m n o \mid l r, j s\rangle\left\langle l u, j v \mid m n o^{\prime}\right\rangle\left\langle e_{p}^{(l)} \otimes e_{q}^{(j)}, e_{u}^{(l)} \otimes e_{v}^{(j)}\right\rangle U_{o^{\prime} o}^{(m, n)} \\
& =\sum_{\substack{m, n, o, o^{\prime}, u, v}}\langle m n o \mid l r, j s\rangle\left\langle l u, j v \mid m n o^{\prime}\right\rangle \delta_{p u} \delta_{q v} U_{o^{\prime} o}^{(m, n)} \\
& =\sum_{m, n, o, o^{\prime}}\langle m n o \mid l r, j s\rangle\left\langle l p, j q \mid m n o^{\prime}\right\rangle U_{o^{\prime} o}^{(m, n)}
\end{aligned}
$$

and by using the matrix elements of $U^{(l)}$ and $U^{(j)}$, we get

$$
U_{p r}^{(l)} U_{q s}^{(j)}=\sum_{m, n, o, o^{\prime}}\langle m n o \mid l r, j s\rangle\left\langle l p, j q \mid m n o^{\prime}\right\rangle U_{o^{\prime} o}^{(m, n)}
$$

From the lecture, if we denote $\operatorname{dim}\left(\mathcal{H}^{(m, n)}\right)=d^{m}$, the orthogonality relation gives

$$
\frac{1}{|G|} \sum_{a \in G} \overline{U_{\rho^{\prime} \rho}^{\left(m^{\prime}, n^{\prime}\right)}(a)} U_{o^{\prime} o}^{(m, n)}(a)=\frac{1}{d_{m}} \delta_{m m^{\prime}} \delta_{n n^{\prime}} \delta_{o^{\prime} \rho^{\prime} \delta^{\prime}} \delta_{o \rho}
$$

Thus,

$$
\begin{aligned}
\frac{1}{|G|} \sum_{a \in G} \overline{U_{\rho^{\prime} \rho}^{\left(m^{\prime}, n^{\prime}\right)}(a)} U_{p r}^{(l)}(a) U_{q s}^{(j)}(a) & =\frac{1}{d_{m}} \sum_{m, n, o, o^{\prime}}\langle m n o \mid l r, j s\rangle\left\langle l p, j q \mid m n o^{\prime}\right\rangle \delta_{m m^{\prime}} \delta_{n n^{\prime}} \delta_{o^{\prime} \rho^{\prime}} \delta_{o \rho} \\
& =\frac{1}{d_{m^{\prime}}}\left\langle m^{\prime} n^{\prime} \rho \mid l r, j s\right\rangle\left\langle l p, j q \mid m^{\prime} n^{\prime} \rho^{\prime}\right\rangle
\end{aligned}
$$

We can reindex $m^{\prime} \rightarrow m, n^{\prime} \rightarrow n$, then we have

$$
\begin{equation*}
\frac{1}{|G|} \sum_{a \in G} \overline{U_{\rho^{\prime} \rho}^{(m, n)}(a)} U_{p r}^{(l)}(a) U_{q s}^{(j)}(a)=\frac{1}{d_{m}}\langle m n \rho \mid l r, j s\rangle\left\langle l p, j q \mid m n \rho^{\prime}\right\rangle . \tag{3}
\end{equation*}
$$

3 Wigner-Eckart theorem

Let us define $\mathcal{H}^{(l)}$ and $\mathcal{H}^{(j)}$ in section 2 to be the same as that from section 1. Assume that there exists a representation of class $\eta^{(k)}$ in the decomposition of $\mathcal{H}^{(l)} \otimes \mathcal{H}^{(j)}$. In other words, there exists (m, n) in the decomposition

$$
\mathcal{H}^{(l)} \otimes \mathcal{H}^{(j)}=\bigoplus \alpha_{m} \mathcal{H}^{(m)}=\bigoplus \mathcal{H}^{(m, n)}
$$

such that $\eta^{(m, n)}=\eta^{(k)}$. Then, it is possible to calculate the inner product given in section 1 , and the result is called the Wigner-Eckart theorem. Because of the linearity of the maps in the expression, it is sufficient to consider the bases $\left\{e_{o}^{(k)}\right\}_{o},\left\{e_{r}^{(l)}\right\}_{r},\left\{e_{s}^{(j)}\right\}_{s}$ of $\mathcal{H}^{(k)}, \mathcal{H}^{(l)}, \mathcal{H}^{(j)}$, respectively. We will omit the group element a for now, then one has

$$
\begin{array}{rlr}
\left\langle e_{o}^{(k)}, \tau_{l}\left(e_{r}^{(l)}\right) e_{s}^{(j)}\right\rangle & =\left\langle U e_{o}^{(k)}, U \tau_{l}\left(e_{r}^{(l)}\right) e_{s}^{(j)}\right\rangle & \text { (by unitary) } \\
& =\left\langle U^{(k)} e_{o}^{(k)}, U \tau_{l}\left(e_{r}^{(l)}\right) U^{-1} U e_{s}^{(j)}\right\rangle & \text { (adding } I=U^{-1} U \text {) } \\
& =\left\langle U^{(k)} e_{o}^{(k)}, \tau_{l}\left(U^{(l)} e_{r}^{(l)}\right) U^{(j)} e_{s}^{(j)}\right\rangle & \text { (by definition). }
\end{array}
$$

By adding the appropriate identity operator and using orthonormality,

$$
\begin{aligned}
U^{(k)} e_{o}^{(k)} & =I U^{(k)} e_{o}^{(k)} \\
& =\sum_{k^{\prime}, o^{\prime}}\left\langle e_{o^{\prime}}^{\left(k^{\prime}\right)}, U^{(k)} e_{o}^{(k)}\right\rangle e_{o^{\prime}}^{\left(k^{\prime}\right)} \\
& =\sum_{k^{\prime}, o^{\prime}} \delta_{k^{\prime} k} U_{o^{\prime} o}^{(k)} e_{o^{\prime}}^{\left(k^{\prime}\right)} \\
& =\sum_{o^{\prime}} U_{o^{\prime} o}^{(k)} e_{o^{\prime}}^{(k)}, \\
\tau_{l}\left(U^{(l)} e_{r}^{(l)}\right) & =\tau_{l}\left(I U^{(l)} e_{r}^{(l)}\right) \\
& =\sum_{l^{\prime}, r^{\prime}}\left\langle e_{r^{\prime}}^{\left(l^{\prime}\right)}, U^{(l)} e_{r}^{(l)}\right\rangle \tau_{l}\left(e_{r^{\prime}}^{\left(l^{\prime}\right)}\right) \\
& =\sum_{l^{\prime}, r^{\prime}} \delta_{l^{\prime} l} U_{r^{\prime} r}^{(l)} \tau_{l}\left(e_{r^{\prime}}^{\left(l^{\prime}\right)}\right) \\
& =\sum_{r^{\prime}} U_{r^{\prime} r}^{(l)} \tau_{l}\left(e_{r^{\prime}}^{(l)}\right) \\
U^{(j)} e_{s}^{(j)} & =I U^{(j)} e_{s}^{(j)} \\
& =\sum_{j^{\prime}, s^{\prime}}\left\langle e_{s^{\prime}}^{\left(j^{\prime}\right)}, U^{(j)} e_{s}^{(j)}\right\rangle e_{s^{\prime}}^{\left(j^{\prime}\right)} \\
& =\sum_{j^{\prime}, s^{\prime}} \delta_{j^{\prime} j} U_{s^{\prime} s}^{(j)} e_{s^{\prime}}^{\left(j^{\prime}\right)} \\
& =\sum_{s^{\prime}} U_{s^{\prime} s}^{(j)} e_{s^{\prime}}^{(j)} .
\end{aligned}
$$

Thus, we get

$$
\left\langle e_{o}^{(k)}, \tau_{l}\left(e_{r}^{(l)}\right) e_{s}^{(j)}\right\rangle=\sum_{r^{\prime}, s^{\prime}, o^{\prime}} \overline{U_{o^{\prime} o}^{(k)}} U_{r^{\prime} r}^{(l)} U_{s^{\prime} s}^{(j)}\left\langle e_{o^{\prime}}^{(k)}, \tau_{l}\left(e_{r^{\prime}}^{(l)}\right) e_{s^{\prime}}^{(j)}\right\rangle .
$$

The left-hand side does not depend on the group element, so we can write

$$
\left\langle e_{o}^{(k)}, \tau_{l}\left(e_{r}^{(l)}\right) e_{s}^{(j)}\right\rangle=\frac{1}{|G|} \sum_{a \in G}\left\langle e_{o}^{(k)}, \tau_{l}\left(e_{r}^{(l)}\right) e_{s}^{(j)}\right\rangle
$$

then by using equation (3), one has

$$
\begin{aligned}
\left\langle e_{o}^{(k)}, \tau_{l}\left(e_{r}^{(l)}\right) e_{s}^{(j)}\right\rangle & =\frac{1}{|G|} \sum_{r^{\prime}, s^{\prime}, o^{\prime}} \sum_{a \in G} \overline{U_{o^{\prime} o}^{(k)}(a)} U_{r^{\prime} r}^{(l)}(a) U_{s^{\prime} s}^{(j)}(a)\left\langle e_{o^{\prime}}^{(k)}, \tau_{l}\left(e_{r^{\prime}}^{(l)}\right) e_{s^{\prime}}^{(j)}\right\rangle \\
& =\frac{1}{d_{k}} \sum_{r^{\prime}, s^{\prime}, o^{\prime}}\langle k o \mid l r, j s\rangle\left\langle l r^{\prime}, j s^{\prime} \mid k o^{\prime}\right\rangle\left\langle e_{o^{\prime}}^{(k)}, \tau_{l}\left(e_{r^{\prime}}^{(l)}\right) e_{s^{\prime}}^{(j)}\right\rangle
\end{aligned}
$$

Equivalently,

$$
\begin{equation*}
\left\langle e_{o}^{(k)}, \tau_{l}\left(e_{r}^{(l)}\right) e_{s}^{(j)}\right\rangle=\langle k o \mid l r, j s\rangle T(k, j, l) \tag{4}
\end{equation*}
$$

where

$$
T(k, j, l)=\frac{1}{d_{k}} \sum_{r^{\prime}, s^{\prime}, o^{\prime}}\left\langle l r^{\prime}, j s^{\prime} \mid k o^{\prime}\right\rangle\left\langle e_{o^{\prime}}^{(k)}, \tau_{l}\left(e_{r^{\prime}}^{(l)}\right) e_{s^{\prime}}^{(j)}\right\rangle .
$$

The significant of this result is that we can split the inner product into the Clebsch-Gordon coefficient and a term depending on k, j, l alone (and not on the basis of the invariant subspace). In Dirac notation,

$$
\left\langle e_{o}^{(k)}, \tau_{l}\left(e_{r}^{(l)}\right) e_{s}^{(j)}\right\rangle:=\langle k o| \tau_{r}^{(l)}|j s\rangle \quad, \quad T(k, j, l):=\left\langle k\left\|\tau^{(l)}\right\| j\right\rangle .
$$

Often, $\left\langle k\left\|\tau^{(l)}\right\| j\right\rangle$ is called the reduced matrix element. Equation (5) then reads

$$
\langle k o| \tau_{r}^{(l)}|j s\rangle=\langle k o \mid l r, j s\rangle\left\langle k\left\|\tau^{(l)}\right\| j\right\rangle,
$$

where

$$
\left\langle k\left\|\tau^{(l)}\right\| j\right\rangle=\frac{1}{d_{k}} \sum_{r^{\prime}, s^{\prime}, o^{\prime}}\left\langle l r^{\prime}, j s^{\prime} \mid k o^{\prime}\right\rangle\left\langle k o^{\prime}\right| \tau_{r^{\prime}}^{(l)}\left|j s^{\prime}\right\rangle .
$$

4 Reference

[1] Groups and their representations, lecture notes by S. Richard.
[2] Proof of the selection rule, report by Y. Li.
[3] Theorie des groupes pour la physique, lecture notes by W. Amrein.

[^0]: ${ }^{1}$ The notation (m, n) also helps us differentiate between the basis with respect to $\bigoplus \mathcal{H}^{(m, n)}$ and that with respect to $\mathcal{H}^{(l)} \otimes \mathcal{H}^{(j)}$.

