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1 Selection rules

Let us summarize the main ideas of the selection rule. The definitions are given in [1] and
the proof is given in [2]. Also, for simplicity, we will work with finite groups and finite
dimensional representations.

For a unitary representation (H,U), we can decompose it into irreducible representations
%:@VjH(j) s U:@VjU(j),

and we also have the representation (B(#),U) which can be decomposed into irreducible
representations

BH) =D , U=SuuU?.

Focusing on the equivalent class ) containing (£®,1U/"), there exists an irreducible repre-
sentation (H®W,U®), and we denote the similarity transformation between them by

7 HY — L0,

Then, for any f; € HY, £, € HP where m € {1,...,v}, and f; € HY) where n € {1,..,v;},
one has
(from(f)f;) =0

(k

unless there exists a representation of class 7® in the decomposition of the representation

(HO @ HD,UW @ UO).

2 Clebsch-Gordon coefficients

Consider two general representations (H", U®) and (H), UY)) where we denote the basis
of HO by {e}, and HD by {egj)}s. If the representation is from a single group G, the
representation (H® @ HY),U® @ UY) is not irreducible in general, meaning that we can
decompose it into irreducible representation

HD @ HU) = [any a, H™ = D Hmn) U0 @ UU) = [an) a,, U™ = fany ytmn),
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where n € {1,...,a,,}. Denote a basis for H(™™) by {e(()m’")}o, then we can write this basis
in terms of the uncoupled basis {eg) ® eY )}T75 by

m") ZC mno;lj),., .

The coefficients C(mno; 1), are called the Clebsch-Gordon coefficients. With its application
in quantum mechanics, the Dirac notation is often used, in which

= emm) Ir, js)g = e ® e

[mno)g, = e™" e

C(mno;lj),, = (lr, jsimno) , C(mno;lj),s := (mnollr, js)

where we have denoted @ and ® to distinguish between the bases. Then, the equation reads

imno), Z |Ir, js)g (lr, js|mno).

Let us use the Dirac notation for the Clebsch-Gordon coefficients only. This is because by
using the orthonormality of {eg) ® eY )}ns, we get

<€z()l) ® e e m7")> = C(mno; lj)pq = (Ip, jg|mno),

q o
so the Dirac notation gives us a natural way to write down the coefficients.

Now, let us study some properties of the Clebsch-Gordon coefficients, even though we
might not use all of them. We first define a linear operator on H = H® @ H) = @ H(™n)

Lo = H — H,
f (e (mn)7f> elm:mn).

o
In Dirac notation, we write this as I,;,,, = |mno)(mno|. By orthonormality, we have

Lo €)= (elmm), e@lnl)) elmm)

(mon).

== 5mm/ 5nn’ 500’ €,
Then, if we define

Iy : H—H,
Fe > Luno f

m,n,o
. . : (m/ ) .
its action on the basis {e,, Yoo Of H is given by

I@@((;nln/) = Z 5mm/5nn/500/ eg’m,n) = ngn/n/),

m,n,o

'The notation (m,n) also helps us differentiate between the basis with respect to @ H(™™) and that with
respect to H® @ H )
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meaning that I acts like the identity operator on H. We can apply this result to the basis
with respect to HY @ HY) as follows

(el @ e e @ ey = (el @ e, I 67()@) e
= Z<e§“® ey (el o) @ el

= Z (Ip, jqlmno)(mnollr, js),

but since (eé,) ® e(g ), @ & egj ) = Oprdgs, We get

Z (Ip, jqlmno){mnollr, js) = OprOgs- (1)

Similarly, we can define the following operators

Il,ﬂ’js T H — H,
[t @ed, f)el @,

® - H—>H,
Fe) Injf=f

then using the similar procedure for <egm’"), egn/’n/)% we get
Z(mno]lr 78)(lr, 78|m'n'o") = 8y Ot Goor - (2)

.8

We will mainly deal with unitary representation so let U} and UY) be unitary operators.
We now show that U = UY ® UY) is also unitary in # as defined previously. For brevity,
we will omit the group element a from U(a). Recall that U is unitary if for any f,g € H,
one has

(Uf,Ug) =(f,9)

Due to the linearity of the map and the inner product, it is sufficient to consider the basis
{eg) ® eg])}m, i.e., for arbitrary p, q,r, s,

<U(eg) ® eéj)) l) ® e > < e}()l ) ® (U(j)eflj)), (U(’)eﬁl)) ® (U(J)egj))>
= <U(’)e§)’), U(l)erl)> <U(j)€((1j), U(j)egj))
= <€1(;l)7€rl)> <€((JJ)’ el
= (&) @e) e @),

where we have used unitary property of U and UU) at the third line. Thus, U is indeed
unitary. The basis {e((,mm}mm,o is given by a linear combination of the uncoupled basis so

3
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the result still holds even if we consider the new basis. Using I and the fact that U™
only acts on H™™ one has

(e © ) = LU (Ia(el) © )
_ Z (emm), <Z)®eo>>< (') 17 (el el
= m§50,(mno|lr,js> 5mm/5nn/U(§,TZ’”) e((f/’”,)
LS G
(mvn)m’nyo’o

Using the expansion of e, in terms of {eg) ® e )}w,

U ®@ed) = Z (mnollr, js) (lu, ju|mno’) U(’jj ) el @ el

m7n7o7ol7
u,v

Then, take the inner product with eg) ® egj )

() © e UED @cf)) = 3 {mnolir,js) {lu, jolmno') (e @ e, el) &) UG

q

m7n7070/7
U,

— Z (mnollr, js) (lu, jo|mno') 6,04, US"

m7n7070/7
U,

= 3" (mnoltr.js) (p,jalmnd) U™,

and by using the matrix elements of UY and UY), we get

U;QUgg? = Z (mmnollr, js) (Ip, jq|mno’) U(E,’Z’n)

m,n,o0,0'

From the lecture, if we denote dim(H(™™) = d™, the orthogonality relation gives

- 1
Z U(m o ) OTZ n) (a) = d_(gmm’énn'(;oll)'é(?ﬂ’

aEG
Thus,
m n 1 . .
|G| anGU ( ) U(J (a) = @mgd(mno]lr,js) (Ip, §q/mmn0") Smm/Onns G0y Sop
1 ) .
= —(m'n'pllr, js){Ip, jqlm'n'p’).

We can reindex m’ — m, n’ — n, then we have

ZU 50 (@) U (a) UD(@) = — (mmnplir, js) ip, jalmnp). (3)

aEG m
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3 Wigner-Eckart theorem

Let us define ) and HY in section 2 to be the same as that from section 1. Assume that
there exists a representation of class n®) in the decomposition of H) @ H). In other words,
there exists (m,n) in the decomposition

HO @ HY) = P o, H™ = @ Hmm)

such that n(™™ = n®) Then, it is possible to calculate the inner product given in section 1,
and the result is called the Wigner-Eckart theorem. Because of the linearity of the maps in
the expression, it is sufficient to consider the bases {egk)}o, {e,(al)}r, {egj)}s of H® HO H)
respectively. We will omit the group element a for now, then one has

<e(k) 71(eD) ])> = <Ue(k Ury(e)el ])> (by unitary)
= (URe® Un(eMUUeY)) (adding I = U~'U)
= <U(k)egk), Tl(U(l)eﬁl))U(j)egj» (by definition).

By adding the appropriate identity operator and using orthonormality,
U®e®) = [7®) k)

_Z (k’ U(ke >()
= Z&akUii o’/
Z Jocy
n(UWel) = n(1UD ey
S0 ()
= Z(SHU 7 e )
:ZWM&>

7'/

UWel) = 1y

- z<ege g
— ]2 5 U(] ,)
Z s's s’ :
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Thus, we get

(e, 1 (e)el)y = Z Uk) Ul) U <e Ny j)>.

r!,s’ 0

The left-hand side does not depend on the group element, so we can write

(e m(el)e?) = 7 32 (. m(e)el),

aceG

then by using equation (3), one has

(el®), 7y(eD) Z Z U(l )Ui,z(a)<egf),Tl(ei/))egf)>

r! s o acelG
1 ' » |
T Z (kolir, js) (r', js'[ko') (el m(el)el).
Equivalently,
(e®, 7(eD)e)y = (kolir, js) T(k, j,1), "
where

. 1 |
T(k.g.0) = 7 > (s |ko) ey m(el))ed).

r!.s’ o0

The significant of this result is that we can split the inner product into the Clebsch-Gordon
coefficient and a term depending on k,j,[ alone (and not on the basis of the invariant
subspace). In Dirac notation,

(e, me)el) = (kolr"|js) . T(k,j.1) = (kl|[7V]5).
Often, (k||7(®]j) is called the reduced matrix element. Equation (5) then reads

(kolr"js) = (kollr, js) (k| ]|),

where

1
(KITO17) = o D (', js' koY ko' [r)|s').

r!.s’ o
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