A Proof of Maschke's theorem on vector space

Takami Sugimoto

Theorem. If G is a finite group, any finite dimensional representation (\mathcal{H}, U) in a vector space is completely reducible.

Remark 1. (\mathcal{H}, U) in a finite dimensional vector space is completely reducible if \mathcal{H} can write by using finite number of irreducible representation \mathcal{H}_k as follows:

$$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \oplus \cdots \oplus \mathcal{H}_n.$$

Knowing that if the following proposition is true, then the theorem above is also true.

Proposition. Let (\mathcal{H}, U) be reducible and finite dimensional. For all U-invariant subspace $\mathcal{H}_1 \subseteq \mathcal{H}$, (\mathcal{H}_1 is U-invariant subspace $\Leftrightarrow \mathbf{h} \in \mathcal{H}_1 \Rightarrow U\mathbf{h} \in \mathcal{H}_1$)

There exists U-invariant subspace \mathcal{H}_2 satisfying the following condition:

$$\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$$
.

Firstly, let us prove the theorem assuming the proposition is true by using induction.

When $\dim \mathcal{H} = 1$, it is true since \mathcal{H} is irreducible. Assuming that $\dim \mathcal{H} \geq 2$ and the proposition is true until the dimension of $\mathcal{H} = n - 1$. Then let us prove the proposition is also true when the dimension of $\mathcal{H} = n$. There exists non-trivial U-invariant subspace \mathcal{H}_1 , since (\mathcal{H}, U) is reducible. And we can take U-invariant subspace \mathcal{H}_2 satisfying $\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2$ by the proposition. Because $\dim \mathcal{H}_1 < \dim \mathcal{H}_2 < \dim \mathcal{H}_3$, from the assumption of the induction, both \mathcal{H}_1 and \mathcal{H}_2 are the direct sum of irreducible representations of finite numbers We can see the fact by using the proposition repeatedly until each elements of direct sum become irreducible representation. Thus, \mathcal{H} is also a completely reducible representation. \blacksquare

Then, let us prove the proposition.

Proof. Let us take *U*-invariant subspace \mathcal{H}_1 , and consider $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$.

To give the above direct sum decomposition as a linear space, all we need to do is construct $P \in \text{End}(\mathcal{H})$ (i.e. $\text{End}(\mathcal{H}) := \{f \mid f : \mathcal{H} \to \mathcal{H}\}$) with $P^2 = P$, $\text{Im}(P) = \mathcal{H}_1$. Because by defining $\mathcal{H}_2 := \text{Ker}(P)$ and $P' := \text{Id}_V - P$, we can make orthogonal projection system *1 P, P', where $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ holds. In

^{*1} There exists the following theorem. When linear maps P_1, \cdots, P_k satisfy the following conditions (i) $P_i^2 = P_i (1 \le i \le k)$ (ii) $i \ne k \Rightarrow P_i P_j = O$

addition, for \mathcal{H}_2 to be G-invariant, P should be G-homomorphism. *2

Let P_0 be the projection to \mathcal{H}_1 of the above direct sum decomposition. We also modified the P_0 , we defined P as follows

$$P := \frac{1}{|G|} \sum_{a \in G} U(a)^{-1} P_0 U(a) \in \operatorname{End}(\mathcal{H}_1)$$

We can see that $\operatorname{Im}(P) \subseteq \mathcal{H}_1$ since \mathcal{H}_1 is G-invariant. For $\mathbf{h}_1 \in \mathcal{H}_1$,

$$P\mathbf{h}_1 = \frac{1}{|G|} \sum_{a \in G} U(a)^{-1} P_0 U(a) \mathbf{h}_1$$

$$= \frac{1}{|G|} \sum_{a \in G} U(a)^{-1} U(a) \mathbf{h}_1 \quad (\because U(a) \mathbf{h}_1 \in \mathcal{H}_1)$$

$$= \frac{1}{|G|} \sum_{a \in G} U(a^{-1}a) \mathbf{h}_1$$

$$= \frac{1}{|G|} \sum_{a \in G} \mathbf{h}_1$$

$$= \mathbf{h}_1$$

Thus, $\mathcal{H}_1 \subseteq \operatorname{Im}(P) = \mathcal{H}_1 : \operatorname{Im}(P) = \mathcal{H}_1$.

Also, because of $P\mathbf{h}_1 = \mathbf{h}_1$ for all $\mathbf{h}_1 \in \mathcal{H}_1$, $P(P\mathbf{h}) = P(P(\mathbf{h}_1 + \mathbf{h}_2)) = P\mathbf{h}_1$ where $\mathbf{h}_2 \in \text{Ker}(P)$, Thus $P^2 = P$.

Finally, let us prove that P is G-homomorphism. For $b \in G$

$$\begin{split} PU(b) &= \frac{1}{|G|} \sum_{a \in G} U(a^{-1}) P_0 U(a) U(b) \\ &= \frac{1}{|G|} \sum_{a \in G} U(a^{-1}) P_0 U(ab) \\ &= \frac{1}{|G|} \sum_{a \in G} U(b) U(b^{-1}) U(a^{-1}) P_0 U(ab) \quad \text{(Using the fact that } U(b) U(b^{-1}) = \mathrm{Id}_V) \\ &= \frac{1}{|G|} \sum_{a \in G} U(b) U((ab)^{-1}) P_0 U(ab) \\ &= U(b) \frac{1}{|G|} \sum_{a \in G} U(a^{-1}) P_0 U(a) \quad \cdots (*) \\ &= U(b) P \end{split}$$

 $(iii)P_1 + \cdots P_k = \mathrm{Id}_V$

By setting $\mathcal{H}_i := \operatorname{Im}(P_i)$, the following direct sum decomposition holds

$$\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_k$$

*2 Since

$$\forall \mathbf{h}_2 \in \mathcal{H}_2; \ U(a)\mathbf{h}_2 \in \mathcal{H}_2 \Leftrightarrow \forall \mathbf{h}_2 \in \mathrm{Ker}(P); \ U(a)\mathbf{h}_2 \in \mathrm{Ker}(P)$$
$$\Leftrightarrow P\mathbf{h}_2 = 0 \Rightarrow P(U(a)\mathbf{h}_2) = 0$$

(*) I use the following fact:

Let V be linear space and F be a function from group G to V.

All $b \in G$, satisfy the following equation:

$$\sum_{a \in G} F(a) = \sum_{a \in G} F(ba) = \sum_{a \in G} F(ab) = \sum_{a \in G} F(a^{-1})$$

Because of the above, \mathcal{H}_2 satisfies $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$ and it is G-invariant.

References

- [1] Serge Richard. Groups and their representations. 2022
- [2] Gaku Ikeda. Tensor Algebra and Representation Theory. 2020