Heisenberg Group

Ryotaro Arakawa

March 15, 2023

1 Introduction

This report aims to introduce the Heisenberg group H named after Werner Heisenberg and solves relevant exercises.

2 Definition

The Heisenberg group H is the group of 3×3 upper triangular matrices A of the form

$$
A=\left(\begin{array}{ccc}
1 & a_{1} & a_{2} \tag{1}\\
0 & 1 & a_{3} \\
0 & 0 & 1
\end{array}\right)
$$

where a_{1}, a_{2} and a_{3} are arbitrary real numbers. It is clearly associative as it is a group of matrices.

Let B also take the form

$$
B=\left(\begin{array}{ccc}
1 & b_{1} & b_{2} \tag{2}\\
0 & 1 & b_{3} \\
0 & 0 & 1
\end{array}\right)
$$

where $b_{i}(i=1,2,3) \in \mathbb{R}$. And $A B$ is written as

$$
A B=\left(\begin{array}{ccc}
1 & a_{1}+b_{1} & b_{2}+a_{1} b_{3}+a_{2} \tag{3}\\
0 & 1 & a_{3}+b_{3} \\
0 & 0 & 1
\end{array}\right)
$$

It is easy to check that the product of two matrices $A B$ is again of the form (1). and it is clear that the identity matrix is of the form (1) by substituting zero to a_{1}, a_{2}, a_{3}.

Furthermore, a direct computation shows that if A is as in (1), then

$$
A^{-1}=\left(\begin{array}{ccc}
1 & -a_{1} & a_{1} a_{3}-a_{2} \tag{4}\\
0 & 1 & -a_{3} \\
0 & 0 & 1
\end{array}\right)
$$

It can be checked that $A A^{-1}=A^{-1} A=I$.
Therefore, H is a subgroup of $\mathrm{GL}(3 ; \mathbb{R})$. In fact, H is also a matrix Lie group.

3 Exercises

Exercise 1
Determine the center $Z(H)$ of the Heisenberg group H. Show that the quotient group $H / Z(H)$ is abelian.

From Definition 1.2 .11 in the lecture notes, the center of a Lie group H is defined by

$$
\begin{equation*}
Z(H)=\{A \in H \mid A B=B A \text { for all } B \in H\} \tag{5}
\end{equation*}
$$

Using eq.(3), $A B=B A$ is written as

$$
\left(\begin{array}{ccc}
1 & a_{1}+b_{1} & b_{2}+a_{1} b_{3}+a_{2} \tag{6}\\
0 & 1 & a_{3}+b_{3} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & a_{1}+b_{1} & b_{2}+a_{3} b_{1}+a_{2} \\
0 & 1 & a_{3}+b_{3} \\
0 & 0 & 1
\end{array}\right)
$$

From this, one can obtain

$$
\begin{equation*}
a_{1} b_{3}=a_{3} b_{1} \tag{7}
\end{equation*}
$$

this equation is satisfied for any real numbers b_{1}, b_{2}, b_{3} only when a_{1} and a_{3} are zero. Therefore $Z(H)$ can be given by

$$
Z(H)=\left\{\left.\left(\begin{array}{ccc}
1 & 0 & a \tag{8}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\}
$$

From now on, let us show that the quotient group $H / Z(H)$ is abelian. This group is defined by

$$
\begin{equation*}
H / Z(H)=\{[A]=A Z(H)=Z(H) A \mid A \in H\} \tag{9}
\end{equation*}
$$

where $Z(H)$ is an abelian and normal subgroup of H from the exercise 1.2.12. It is sufficient to consider the left coset. $H / Z(H)$ is abelian if and only if $[A][B]=[B][A]$ for any $A, B \in H$. By definition, one has

$$
\begin{align*}
{[A][B] } & =[A B] \\
& =A B Z(H) \\
& =\left\{\left.A B\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\begin{array}{ccc}
1 & a_{1} & a_{2} \\
0 & 1 & a_{3} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & b_{1} & b_{2} \\
0 & 1 & b_{3} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\begin{array}{ccc}
1 & a_{1}+b_{1} & a+\left(a_{2}+b_{2}\right)+a_{1} b_{3} \\
0 & 1 & a_{3}+b_{3} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\begin{array}{ccc}
1 & a_{1}+b_{1} & c \\
0 & 1 & a_{3}+b_{3} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\} \tag{10}
\end{align*}
$$

Likewise,

$$
\begin{align*}
{[B][A] } & =[B A] \\
& =\left\{\left.\left(\begin{array}{ccc}
1 & a_{1}+b_{1} & a+\left(a_{2}+b_{2}\right)+b_{1} a_{3} \\
0 & 1 & a_{3}+b_{3} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{R}\right\} \\
& =\left\{\left.\left(\begin{array}{ccc}
1 & a_{1}+b_{1} & c \\
0 & 1 & a_{3}+b_{3} \\
0 & 0 & 1
\end{array}\right) \right\rvert\, c \in \mathbb{R}\right\} \tag{11}
\end{align*}
$$

As shown above, it is possible to use $c \in \mathbb{R}$ as $(1,3)$ element since a can take any real number. It is confirmed from equation (10) and (11) that $[A][B]=$ $[B][A]$ and thus $H / Z(H)$ is abelian.

Exercise 2
Show that the exponential mapping from the Lie algebra of the Heisenberg group to the Heisenberg group is one-to-one and onto.

By definition, one has for $t \in \mathbb{R}$

$$
\begin{equation*}
e^{t X}=\sum_{j=0}^{\infty} \frac{(t X)^{j}}{j!} \tag{12}
\end{equation*}
$$

Let us compute $e^{t X}$, where

$$
t X=\left(\begin{array}{ccc}
0 & t x & t y \tag{13}\\
0 & 0 & t z \\
0 & 0 & 0
\end{array}\right)
$$

with any $x, y, z \in \mathbb{R}$. Note that

$$
(t X)^{2}=\left(\begin{array}{ccc}
0 & 0 & t^{2} x z \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

and that

$$
(t X)^{3}=0
$$

Therefore,

$$
\begin{align*}
e^{t X} & =\frac{(t X)^{0}}{0!}+\frac{(t X)^{1}}{1!}+\frac{(t X)^{2}}{2!}+\sum_{j=3}^{\infty} \frac{(t X)^{j}}{j!} \\
& =\left(\begin{array}{ccc}
1 & t x & t y+t^{2} x z / 2 \\
0 & 1 & t z \\
0 & 0 & 1
\end{array}\right) \tag{14}
\end{align*}
$$

By definition, the Lie algebra of H denoted $L(H)$ is the set of all matrices Y such that $e^{t Y}$ is in H for all real numbers t.

$$
\begin{equation*}
L(H)=\left\{Y \mid e^{t Y} \in H \text { for all } t \in \mathbb{R}\right\} \tag{15}
\end{equation*}
$$

Thus the matrix X is in $L(H)$ as $e^{t X} \in H$ for any $t \in \mathbb{R}$.
Let us now consider the exponential mapping from some element $X \in L(H)$ to $e^{X} \in H$.

Surjective proof:

The component x, z in X (eq.(13)) can take any real number, so the (1,2) and $(2,3)$ elements in e^{X} (eq.(14)) can trivially be any real number. It is also clear that the element $y+x z / 2$ can be any real number as y can take any real number for any fixed x, z. Therefore this mapping is surjective.

Injective proof:

Let X^{\prime} denote X replacing x, y, z with $x^{\prime}, y^{\prime}, z^{\prime}$ and suppose $e^{X}=e^{X^{\prime}}$, that is

$$
\begin{aligned}
x & =x^{\prime} \\
y+x z / 2 & =y^{\prime}+x^{\prime} z^{\prime} / 2 \\
z & =z^{\prime}
\end{aligned}
$$

One can also derive $y=y^{\prime}$ as it is clear that $x z / 2=x^{\prime} z^{\prime} / 2$ from $x=x^{\prime}, z=z^{\prime}$. It is finally confirmed that $X=X^{\prime}$, which satisfies the condition for injective.

From the discussion above, it is proved that the exponential mapping from $X \in L(H)$ to $e^{X} \in H$ is bijective.

4 Application in physics

The following three elements form a basis for the Lie algebra of the Heisenberg group $L(H)$

$$
X=\left(\begin{array}{ccc}
0 & 1 & 0 \tag{16}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) ; Y=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) ; Z=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

It is known that these basis elements satisfy the commutation relations,

$$
\begin{equation*}
[X, Y]=Z ;[X, Z]=0 ;[Y, Z]=0 \tag{17}
\end{equation*}
$$

The name "Heisenberg group" is motivated by the preceding relations, which have the same form as the canonical commutation relations in quantum mechanics,

$$
\begin{equation*}
[\hat{x}, \hat{p}]=i \hbar I ;[\hat{x}, i \hbar I]=0 ;[\hat{p}, i \hbar I]=0 \tag{18}
\end{equation*}
$$

where \hat{x} is the position operator, \hat{p} is the momentum operator, and \hbar is Planck's constant.

References

[1] Lie Groups, Lie Algebras, and Representations An Elementary Introduction, Brian C.Hall
[2] Groups and their representations, Serge Richard

