Correspondence Between Definition 3.18 and the $\epsilon-\delta$ Definition of Continuity

FIRDAUS Rafi Rizqy / 062101889
Special Mathematics Lecture: Groups and their representations (Fall 2022)

Exercise 3.1.9

Let $M=N=\mathbb{R}$ with the usual topology defined by open sets. Check that the notion of continuity introduced in Definition 3.1.8 corresponds to the standard definition of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ in terms of ϵ and δ.

Proof: Given $x_{0} \in \mathbb{R}$ and given $\epsilon>0$, the interval $U=\left(f\left(x_{0}\right)-\epsilon, f\left(x_{0}\right)+\epsilon\right)$ is an open set of the range space \mathbb{R}. We know that $f^{-1}(U)$ is open and contains the point x_{0} such that we can construct a basis element (a, b) about the point x_{0}. Therefore, we can choose δ to be smaller than the two numbers $x_{0}-a$ and $b-x_{0}$. Then if $\left|x-x_{0}\right|<\delta$, the point x must be in the interval (a, b) such that we have $f(x) \in U$. Hence, for any $\epsilon>0$ there exists $\delta>0$ such that

$$
\left|f(x)-f\left(x_{0}\right)\right|<\epsilon, \quad \forall x \text { satisfying }\left|x-x_{0}\right|<\delta
$$

Therefore, the notion of continuity introduced in Definition 3.1.8 implies the $\epsilon-\delta$ definition of continuity.

