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Proposition 2.2.6

Let G be a finite group, and let (H, U) be a representation of G in a Hilbert Space H. Then, U is

equivalent to unitary representation (H′, U ′).

Proof: Let ⟨ , ⟩ be the scalar product on Hilbert space H and (H, U ′) be a representation of G

such that U ′ is isomorphic to map U : G → L(H). Let us define the following expression

⟨f ′, f⟩′ = 1

|G|
∑
a∈G

⟨U ′(a)f ′, U ′(a)f⟩

for f, f ′ ∈ H. This trick is also widely known as Weyl’s Unitary Trick. Note that, the definition

above can only be satisfied by the finite groups as they only have finite numbers of elements. One can

argue that ⟨ , ⟩′ is linear in the second argument by virtue of ⟨ , ⟩ is also linear in the second argument.

For f, g, h ∈ H, the linearity is given by

⟨f, λg + h⟩′ = 1

|G|
∑
a∈G

⟨U ′(a)f, U ′(a)(λg + h)⟩

=
1

|G|
∑
a∈G

λ⟨U ′(a)f, U ′(a)g⟩+ 1

|G|
∑
a∈G

⟨U ′(a)f, U ′(a)h⟩

= λ⟨f, g⟩′ + ⟨f, h⟩′.

Similarly, one can show that ⟨ , ⟩′ is anti-linear in the first argument. Additionally, ⟨ , ⟩′ preserves the
positive-definite property as the sum of positive terms always gives a positive solution unless all of

the terms are equal to zero. If all of the summands are equal to zero, then that means for f ∈ H,

⟨f, f⟩′ = 0 ⇐⇒ f = 0 as a result of the equality of scalar product ⟨ , ⟩. Therefore, ⟨ , ⟩′ can also be

defined as a scalar product. We define H′ as the vector space H endowed with the scalar product

⟨ , ⟩′. Let us show that U ′ is unitary with respect to ⟨ , ⟩′

⟨U ′(a)f, U ′(a)f ′⟩′ = 1

|G|
∑
b∈G

⟨U ′(ba)f, U ′(ba)f ′⟩ = 1

|G|
∑
c∈G

⟨U ′(c)f, U ′(c)f ′⟩ = ⟨f, f ′⟩′.

Hence, U ′ is unitary with respect to ⟨ , ⟩′. Let (H, U) and (H, U ′) be representations of group G.
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Since U ′ is isomorphic to U , then there exists a bijective linear map T : H → H such that the linear

map T acts as the change of basis between two linear representations (H, U) and (H, U ′). Hence, one

has

U(a) = T U ′(a)T −1.

By equipping H with the new scalar product ⟨ , ⟩′, we get that U is equivalent to the unitary repre-

sentation (H′, U ′).
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