Proof on Some Statements

FIRDAUS Rafi Rizqy / 062101889

Special Mathematics Lecture: Groups and their representations (Fall 2022)

Exercise 1.1.3

1) Observe that for any group G, the identity element e is unique.

Proof: Suppose e, f are distinct identity elements of a group G. Then, from the definition of the identity element (Definition 1.1.1), one can show that

$$
\begin{aligned}
e & =f e \\
& =e f \\
& =f
\end{aligned}
$$

This gives contradiction with our assumption that $e \neq f$. Therefore, for any group G, the identity element is unique.
2) Observe that $e^{-1}=e,\left(a^{-1}\right)^{-1}=a,(a b)^{-1}=b^{-1} a^{-1}$. It also follows from the definition that for any element a, its inverse a^{-1} is unique.
Proof: From the definition, as the identity element $e \in G$, one has $e^{-1}=e^{-1} e=e e^{-1}=e$. For the second and third statements, one needs to prove that the inverse of any element a is unique which we want to prove by using a contradiction. Suppose $\exists b, c$ as the inverse elements of G with $b \neq c$ such that $a b=a c=e$ for an element $a \in G$, then one has

$$
\begin{aligned}
b & =b e \\
& =b(a c) \\
& =(b a) c \\
& =e c \\
& =c
\end{aligned}
$$

Therefore, this contradicts our assumption that b and c are distinct elements, and thus the inverse of all elements in G is unique. Thus for the second statement, by using the previous knowledge that the inverse element of any element $a \in G$ is unique, one can multiply the left-hand side with the inverse of a which can be shown as follows $a^{-1}\left(a^{-1}\right)^{-1}=e=a a^{-1}=$ $a^{-1} a \Longrightarrow\left(a^{-1}\right)^{-1}=a$. For the third statement, one can use the same trick such that one has $(a b)(a b)^{-1}=e=a a^{-1}=a e a^{-1}=a\left(b b^{-1}\right) a^{-1}=(a b) b^{-1} a^{-1} \Longrightarrow(a b)^{-1}=b^{-1} a^{-1}$.
3) The equality $a b=a c$ implies the equality $b=c$. Similarly, $b a=c a$ implies $b=c$.

Proof: Let us multiply the inverse of a by the left-hand side of the first equality

$$
\begin{aligned}
a^{-1}(a b) & =a^{-1}(a c) \\
\left(a^{-1} a\right) b & =\left(a^{-1} a\right) c \\
\Longrightarrow b & =c
\end{aligned}
$$

With the same technique, let us prove the second equality

$$
\begin{aligned}
(b a) a^{-1} & =(c a) a^{-1} \\
b\left(a a^{-1}\right) & =c\left(a a^{-1}\right) \\
\Longrightarrow b & =c
\end{aligned}
$$

Exercise 1.2.2

Prove that the conjugation defines an equivalence relation, namely the following three properties are satisfied:

1) $a \sim a$ (reflexivity)

Proof: Let e be the identity element of G. Then, one has

$$
\begin{aligned}
a & =e a \\
& =e a e \\
& =e a e^{-1} \\
\Longrightarrow a & \sim a
\end{aligned}
$$

2) $a \sim b$ then $b \sim a$ (symmetry)

Proof: $a \sim b$ implies that $a=c b c^{-1}$ for some c, c^{-1} in G. Thus, one can write

$$
\begin{aligned}
c^{-1} a & =\left(c^{-1} c\right) b c^{-1} \\
c^{-1} a c & =b\left(c^{-1} c\right) \\
b & =c^{-1} a c \\
\Longrightarrow b & \sim a
\end{aligned}
$$

3) $a \sim b$ and $b \sim c$, then $a \sim c$ (transitivity)

Proof: Let $a=f b f^{-1}$ and $b=g c g^{-1}$ for some f, g in G such that one has

$$
\begin{aligned}
a & =f b f^{-1} \\
& =f\left(g c g^{-1}\right) f^{-1} \\
& =(f g) c\left(g^{-1} f^{-1}\right) \\
& =(f g) c(f g)^{-1}
\end{aligned}
$$

Since $f g \in G$ from the definition of group, this implies that $a \sim c$.

