\mathcal{P} is Isomorphic to the Semi-direct Product $T(4) \rtimes \mathcal{L}$

FIRDAUS Rafi Rizqy, PUKDEE Jongruk

Special Mathematics Lecture: Groups and their representations (Fall 2022)

Exercise 1.5.6

Check that (T(4), 1) is a normal subgroup of \mathcal{P} , and that \mathcal{P} is isomorphic to the semi-direct product $T(4) \rtimes \mathcal{L}$.

<u>Proof</u>: Let us first check that (T(4), 1) is a normal subgroup of \mathcal{P} . Consider the element $(b, \Lambda) \in \mathcal{P}$. Then, for all element $(b, \Lambda) \in \mathcal{P}$, one has

$$(b, \Lambda)(T(4), \mathbb{1})(b, \Lambda)^{-1} = (b, \Lambda)(T(4), \mathbb{1})(-\Lambda^{-1}b, \Lambda^{-1})$$

= $(b + \Lambda T(4), \Lambda)(-\Lambda^{-1}b, \Lambda^{-1})$
= $(b + \Lambda T(4) + \Lambda(-\Lambda^{-1}b), \Lambda\Lambda^{-1})$
= $(\Lambda T(4), \mathbb{1})$
= $(T(4), \mathbb{1}).$

We argued that $\Lambda T(4) = T(4)$ with $\Lambda \in \mathcal{L}$ as the matrix Λ in the Lorentz group preserves the bilinear map defined in **Definition 1.5.3** and the map $x \mapsto \Lambda x$ with $x \in \mathbb{R}^4$ is bijective as we can show by considering its determinant. From the matrix form of the Lorentz group's relation, one has

$$\det(\Lambda^T g \Lambda) = \det(\Lambda^T) \det(g) \det(\Lambda) = \det(g) \implies \det(\Lambda^T) \det(\Lambda) = 1.$$

Therefore, $(T(4), \mathbb{1})$ is a normal subgroup of \mathcal{P} . From **Definition 1.5.5**, the elements of \mathcal{P} is given by (b, Λ) with $b \in T(4)$ and $\Lambda \in \mathcal{L}$. One can identify $T(4) \equiv \{(b, \mathbb{1}) \mid b \in T(4)\}$ and $\mathcal{L} \equiv \{(0, \Lambda) \mid \Lambda \in \mathcal{L}\}$. Let us show that the groups T(4) and \mathcal{L} indeed correspond to the sets. For $b, b' \in T(4), \Lambda, \Lambda' \in \mathcal{L}$, and $(b, \mathbb{1}), (b', \mathbb{1}), (0, \Lambda), (0, \Lambda') \in \mathcal{P}$, one has

$$(b, 1)(b', 1) = (b + 1b', 1)$$

= $(b + b', 1)$
 $(0, \Lambda)(0, \Lambda') = (0 + \Lambda(0), \Lambda\Lambda')$
= $(0, \Lambda\Lambda')$

As we can see from the relations above, the multiplication in the Poincaré group corresponds to the addition in T(4) and the product in \mathcal{L} . Therefore, the groups T(4) and \mathcal{L} indeed correspond to the sets. Observe that the intersection of both groups is given by

$$T(4) \cap \mathcal{L} = \{(b, 1)\} \cap \{(0, \Lambda)\} = (0, 1) = e.$$

As we can see, the intersection of T(4) and \mathcal{L} is given by the identity element of \mathcal{P} . Lastly, we can observe that each element of \mathcal{P} admits a decomposition consisting of elements from T(4) and \mathcal{L} as shown below

$$(b, \mathbb{1})(0, \Lambda) = (b + \mathbb{1}(0), \mathbb{1}\Lambda) = (b, \Lambda).$$

Hence, each element $(b, \Lambda) \in \mathcal{P}$ admits a decomposition $(b, \Lambda) = (b, \mathbb{1})(0, \Lambda)$ with $(b, \mathbb{1}) \in T(4)$ and $(0, \Lambda) \in \mathcal{L}$. As the three properties of the Inner semi-direct product have been fulfilled, then one can define the semi-direct product $T(4) \rtimes \mathcal{L}$ such that the Poincaré group \mathcal{P} is isomorphic to the semi-direct product $T(4) \rtimes \mathcal{L}$.