\mathcal{P} is Isomorphic to the Semi-direct Product $T(4) \rtimes \mathcal{L}$

FIRDAUS Rafi Rizqy, PUKDEE Jongruk

Special Mathematics Lecture: Groups and their representations (Fall 2022)

Exercise 1.5.6

Check that $(T(4), \mathbb{1})$ is a normal subgroup of \mathcal{P}, and that \mathcal{P} is isomorphic to the semi-direct product $T(4) \rtimes \mathcal{L}$.

Proof: Let us first check that $(T(4), \mathbb{1})$ is a normal subgroup of \mathcal{P}. Consider the element $(b, \Lambda) \in \mathcal{P}$. Then, for all element $(b, \Lambda) \in \mathcal{P}$, one has

$$
\begin{aligned}
(b, \Lambda)(T(4), \mathbb{1})(b, \Lambda)^{-1} & =(b, \Lambda)(T(4), \mathbb{1})\left(-\Lambda^{-1} b, \Lambda^{-1}\right) \\
& =(b+\Lambda T(4), \Lambda)\left(-\Lambda^{-1} b, \Lambda^{-1}\right) \\
& =\left(b+\Lambda T(4)+\Lambda\left(-\Lambda^{-1} b\right), \Lambda \Lambda^{-1}\right) \\
& =(\Lambda T(4), \mathbb{1}) \\
& =(T(4), \mathbb{1}) .
\end{aligned}
$$

We argued that $\Lambda T(4)=T(4)$ with $\Lambda \in \mathcal{L}$ as the matrix Λ in the Lorentz group preserves the bilinear map defined in Definition 1.5.3 and the map $x \mapsto \Lambda x$ with $x \in \mathbb{R}^{4}$ is bijective as we can show by considering its determinant. From the matrix form of the Lorentz group's relation, one has

$$
\operatorname{det}\left(\Lambda^{T} g \Lambda\right)=\operatorname{det}\left(\Lambda^{T}\right) \operatorname{det}(g) \operatorname{det}(\Lambda)=\operatorname{det}(g) \Longrightarrow \operatorname{det}\left(\Lambda^{T}\right) \operatorname{det}(\Lambda)=1
$$

Therefore, $(T(4), \mathbb{1})$ is a normal subgroup of \mathcal{P}. From Definition 1.5.5, the elements of \mathcal{P} is given by (b, Λ) with $b \in T(4)$ and $\Lambda \in \mathcal{L}$. One can identify $T(4) \equiv\{(b, \mathbb{1}) \mid b \in T(4)\}$ and $\mathcal{L} \equiv\{(0, \Lambda) \mid \Lambda \in \mathcal{L}\}$. Let us show that the groups $T(4)$ and \mathcal{L} indeed correspond to the sets. For $b, b^{\prime} \in T(4), \Lambda, \Lambda^{\prime} \in \mathcal{L}$, and $(b, \mathbb{1}),\left(b^{\prime}, \mathbb{1}\right),(0, \Lambda),\left(0, \Lambda^{\prime}\right) \in \mathcal{P}$, one has

$$
\begin{aligned}
(b, \mathbb{1})\left(b^{\prime}, \mathbb{1}\right) & =\left(b+\mathbb{1} b^{\prime}, \mathbb{1}\right) \\
& =\left(b+b^{\prime}, \mathbb{1}\right) \\
(0, \Lambda)\left(0, \Lambda^{\prime}\right) & =\left(0+\Lambda(0), \Lambda \Lambda^{\prime}\right) \\
& =\left(0, \Lambda \Lambda^{\prime}\right)
\end{aligned}
$$

As we can see from the relations above, the multiplication in the Poincare group corresponds to the addition in $T(4)$ and the product in \mathcal{L}. Therefore, the groups $T(4)$ and \mathcal{L} indeed correspond to the sets. Observe that the intersection of both groups is given by

$$
T(4) \cap \mathcal{L}=\{(b, \mathbb{1})\} \cap\{(0, \Lambda)\}=(0, \mathbb{1})=e .
$$

As we can see, the intersection of $T(4)$ and \mathcal{L} is given by the identity element of \mathcal{P}. Lastly, we can observe that each element of \mathcal{P} admits a decomposition consisting of elements from $T(4)$ and \mathcal{L} as shown below

$$
(b, \mathbb{1})(0, \Lambda)=(b+\mathbb{1}(0), \mathbb{1} \Lambda)=(b, \Lambda) .
$$

Hence, each element $(b, \Lambda) \in \mathcal{P}$ admits a decomposition $(b, \Lambda)=(b, \mathbb{1})(0, \Lambda)$ with $(b, \mathbb{1}) \in T(4)$ and $(0, \Lambda) \in \mathcal{L}$. As the three properties of the Inner semi-direct product have been fulfilled, then one can define the semi-direct product $T(4) \rtimes \mathcal{L}$ such that the Poincaré group \mathcal{P} is isomorphic to the semi-direct product $T(4) \rtimes \mathcal{L}$.

