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1 Introduction

In this report I first give a proof that R is second countable, by constructing an arbitrary open set.
Then I generalize this method to construct an arbitrary open box in Rn. Finally, I give a simple
proof that Rn is second countable.

2 Main Proof

I want to show that there exists a countable basis for R. Let the open set

B(r, x0) := {x ∈ R | |x− x0| < r where r, x0 ∈ Q}. (1)

Since these open sets are only defined for rational values of r, r0 they are countable. It is clear that
the open intervals (a,b), a, b ∈ R form an uncountable basis on R. Therefore, given one of these
intervals I wish to show it can be covered by an arbitrary union of open sets of the form (1). Assume
(a, b) is an open interval where a, b /∈ Q, since otherwise the exercise is trivial. There exists some
Q ∋ x0 ∈ (a, b). Either this point is closest to a or b, or lies exactly in the middle of the interval. Let
it be closest to a. In that case I define a1 := x0+a

2 which gives me a new open interval (a, a1). Find
some Q ∋ x1a ∈ (a, a1) and define B(|x1a − x0|, x0). This set is inside of the interval, and crucially
covers at least half of the distance from x0 to a.

Continue, defining a2 := a1+a
2 and Q ∋ x2a ∈ (a, a2) as well as B(|x2a − x1a|, x1a). Continuing

this construction, we get a set of intervals:

B(|x1a − x0|, x0), B(|x2a − x1a|, x1a), B(|x3a − x2a|, x2a), . . . (2)

that cover

[a1, x0], [a2, a1], [a3, a2], . . . (3)

Since an := an−1+a
2 it is clear an → a as n → ∞ such that in the limit the intervals cover (a, x0].

To cover the rest, let Q ∋ y0 ∈ (b − (x0 − a), b). This will be an open set in all cases unless x0 is
the middle point, in which case I just define y0 = x0. Now repeat the above construction, but for
intervals going from y0 to b, covering [y0, b). At last define B(|x0−y0

2 |, x0+y0

2 ) which covers (x0, y0).
Together, these three constructions cover (a, x0]∪(x0, y0)∪[y0, b) = (a, b), which is what we required.
Thus, R is second countable.
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Figure 1: This figure shows the geometric construction of a hyperbox in Rn using only the union of
a countable set of elements. In each step, the problem reduces to a 1 dimensional problem, which I
already showed is possible to solve in the preceding section.

3 Sketch of generalization to Rn

The method outlined above can be used to construct a hyperbox in Rn. To see the construction
geometrically I refer to Figure 1. First, let us be given a hyperbox:

V (a1, b1, . . . , an, bn) = {(x1, x2, . . . , xN ) = x ∈ Rn|ak < xk < bk ∀k} (4)

Consider the set of line segments:

V1(x2, . . . , xn) := {(x1, x2, . . . , xN ) = x ∈ Rn|a1 < x1 < b1, x2, . . . , xn const.} (5)

By defining1:

D1(r, x0) := {(x1, x2, . . . , xN ) = x ∈ Rn | |x1 − x0| < r where r, x0 ∈ Q}. (6)

We can go through the exact construction as for the one-dimensional case, to produce a countable
set of unions that produce any V1. Let {V1} denote the set of all possible lines of the form given
above. This set is uncountable, but we will consider a subset that is countable, in the following way.
Consider the area and corresponding area segments:

V2(x3, . . . , xn) := {x ∈ Rn|a1 < x1 < b1, a2 < x2 < b2, x3, . . . , xn const.} (7)

D2(r, x0) := {L ∈ {V1} | |x2 − x0| < r where r, x0 ∈ Q} (8)

Where each L is implicitly a variable of x2, and since Q is countable, {D2(r, x0)} is countable. Given
these two definitions, I can again go through the exact same construction as for the one-dimensional

1This definition is equivalent to (1).

2



case, to produce a countable set of unions that produce any V2. Continuing this way n times gives
me the set V , using only a countable set of elements. If none of this makes sense, hopefully the
Figure does.

If the set of all V can be considered a basis on Rn, then this also functions as a proof that Rn

is second countable. However, there does exist a much simpler proof.

4 Problem 3.1.7: Proof that Rn is second countable

The above construction is very elaborate, and wholely unnecessary to prove that Rn is second count-
able. A much easier method is to say we are given a point p ∈ Rn, and an arbitrary neighborhood
V around p. Consider,

B(r, r0) := {x ∈ Rn | |x− r0| < r} (9)

BQ(r, r0) := {x ∈ Rn | |x− r0| < r and r, r0 ∈ Q} (10)

Since the neighborhood is an open set, we can construct around an arbitrary point p0 a ball
B(r,p0) ⊂ V . Inside this ball, we can produce at a set of balls {BQ,0} with rational center and
radius. Picking one of these balls that includes r0

2 means we have constructed a ball with rational
center and radius, which is inside the neighborhood V and contains p0. Doing this for all the un-
countable points pn ∈ V gives an uncountable union

⋃
BQ,n with each BQ,n ∈ {BQ}. By definition

this union must be contained within V and contain all points of V , so it is clear that
⋃

BQ,n = V .
Therefore we have shown that {BQ} is a countable basis and thus that Rn is second countable.

2To directly prove that this is possible, one could imagine doing a construction like in Section 2 along a diameter
of the ball, and therefore argue that since this construction covers the whole line at least one ball must cover p0.
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