On the second countability of \mathbb{R} and \mathbb{R}^{n}

Magnus B. Lyngby (612206006)

January 24, 2023

1 Introduction

In this report I first give a proof that \mathbb{R} is second countable, by constructing an arbitrary open set. Then I generalize this method to construct an arbitrary open box in \mathbb{R}^{n}. Finally, I give a simple proof that \mathbb{R}^{n} is second countable.

2 Main Proof

I want to show that there exists a countable basis for \mathbb{R}. Let the open set

$$
\begin{equation*}
B\left(r, x_{0}\right):=\left\{x \in \mathbb{R}| | x-x_{0} \mid<r \text { where } r, x_{0} \in \mathbb{Q}\right\} . \tag{1}
\end{equation*}
$$

Since these open sets are only defined for rational values of r, r_{0} they are countable. It is clear that the open intervals (a,b), $a, b \in \mathbb{R}$ form an uncountable basis on \mathbb{R}. Therefore, given one of these intervals I wish to show it can be covered by an arbitrary union of open sets of the form (1). Assume (a, b) is an open interval where $a, b \notin Q$, since otherwise the exercise is trivial. There exists some $\mathbb{Q} \ni x_{0} \in(a, b)$. Either this point is closest to a or b, or lies exactly in the middle of the interval. Let it be closest to a. In that case I define $a_{1}:=\frac{x_{0}+a}{2}$ which gives me a new open interval $\left(a, a_{1}\right)$. Find some $\mathbb{Q} \ni x_{1 a} \in\left(a, a_{1}\right)$ and define $B\left(\left|x_{1 a}-x_{0}\right|, x_{0}\right)$. This set is inside of the interval, and crucially covers at least half of the distance from x_{0} to a.

Continue, defining $a_{2}:=\frac{a_{1}+a}{2}$ and $\mathbb{Q} \ni x_{2 a} \in\left(a, a_{2}\right)$ as well as $B\left(\left|x_{2 a}-x_{1 a}\right|, x_{1 a}\right)$. Continuing this construction, we get a set of intervals:

$$
\begin{equation*}
B\left(\left|x_{1 a}-x_{0}\right|, x_{0}\right), B\left(\left|x_{2 a}-x_{1 a}\right|, x_{1 a}\right), B\left(\left|x_{3 a}-x_{2 a}\right|, x_{2 a}\right), \ldots \tag{2}
\end{equation*}
$$

that cover

$$
\begin{equation*}
\left[a_{1}, x_{0}\right],\left[a_{2}, a_{1}\right],\left[a_{3}, a_{2}\right], \ldots \tag{3}
\end{equation*}
$$

Since $a_{n}:=\frac{a_{n-1}+a}{2}$ it is clear $a_{n} \rightarrow a$ as $n \rightarrow \infty$ such that in the limit the intervals cover (a, x_{0}]. To cover the rest, let $\mathbb{Q} \ni y_{0} \in\left(b-\left(x_{0}-a\right), b\right)$. This will be an open set in all cases unless x_{0} is the middle point, in which case I just define $y_{0}=x_{0}$. Now repeat the above construction, but for intervals going from y_{0} to b, covering $\left[y_{0}, b\right)$. At last define $B\left(\left|\frac{x_{0}-y_{0}}{2}\right|, \frac{x_{0}+y_{0}}{2}\right)$ which covers $\left(x_{0}, y_{0}\right)$. Together, these three constructions cover $\left(a, x_{0}\right] \cup\left(x_{0}, y_{0}\right) \cup\left[y_{0}, b\right)=(a, b)$, which is what we required. Thus, \mathbb{R} is second countable.

Figure 1: This figure shows the geometric construction of a hyperbox in \mathbb{R}^{n} using only the union of a countable set of elements. In each step, the problem reduces to a 1 dimensional problem, which I already showed is possible to solve in the preceding section.

3 Sketch of generalization to \mathbb{R}^{n}

The method outlined above can be used to construct a hyperbox in \mathbb{R}^{n}. To see the construction geometrically I refer to Figure 1. First, let us be given a hyperbox:

$$
\begin{equation*}
V\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\boldsymbol{x} \in \mathbb{R}^{n} \mid a_{k}<x_{k}<b_{k} \forall k\right\} \tag{4}
\end{equation*}
$$

Consider the set of line segments:

$$
\begin{equation*}
V_{1}\left(x_{2}, \ldots, x_{n}\right):=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\boldsymbol{x} \in \mathbb{R}^{n} \mid a_{1}<x_{1}<b_{1}, x_{2}, \ldots, x_{n} \text { const. }\right\} \tag{5}
\end{equation*}
$$

By defining ${ }^{1}$:

$$
\begin{equation*}
D_{1}\left(r, x_{0}\right):=\left\{\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\boldsymbol{x} \in \mathbb{R}^{n}| | x_{1}-x_{0} \mid<r \text { where } r, x_{0} \in \mathbb{Q}\right\} . \tag{6}
\end{equation*}
$$

We can go through the exact construction as for the one-dimensional case, to produce a countable set of unions that produce any V_{1}. Let $\left\{V_{1}\right\}$ denote the set of all possible lines of the form given above. This set is uncountable, but we will consider a subset that is countable, in the following way. Consider the area and corresponding area segments:

$$
\begin{align*}
V_{2}\left(x_{3}, \ldots, x_{n}\right) & :=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid a_{1}<x_{1}<b_{1}, a_{2}<x_{2}<b_{2}, x_{3}, \ldots, x_{n} \text { const. }\right\} \tag{7}\\
D_{2}\left(r, x_{0}\right) & :=\left\{L \in\left\{V_{1}\right\}| | x_{2}-x_{0} \mid<r \text { where } r, x_{0} \in \mathbb{Q}\right\} \tag{8}
\end{align*}
$$

Where each L is implicitly a variable of x_{2}, and since \mathbb{Q} is countable, $\left\{D_{2}\left(r, x_{0}\right)\right\}$ is countable. Given these two definitions, I can again go through the exact same construction as for the one-dimensional

[^0]case, to produce a countable set of unions that produce any V_{2}. Continuing this way n times gives me the set V, using only a countable set of elements. If none of this makes sense, hopefully the Figure does.

If the set of all V can be considered a basis on \mathbb{R}^{n}, then this also functions as a proof that \mathbb{R}^{n} is second countable. However, there does exist a much simpler proof.

4 Problem 3.1.7: Proof that \mathbb{R}^{n} is second countable

The above construction is very elaborate, and wholely unnecessary to prove that \mathbb{R}^{n} is second countable. A much easier method is to say we are given a point $p \in \mathbb{R}^{n}$, and an arbitrary neighborhood V around p. Consider,

$$
\begin{align*}
B\left(\boldsymbol{r}, \boldsymbol{r}_{\mathbf{0}}\right) & :=\left\{\boldsymbol{x} \in \mathbb{R}^{n}| | \boldsymbol{x}-\boldsymbol{r}_{\mathbf{0}} \mid<r\right\} \tag{9}\\
B_{Q}\left(\boldsymbol{r}, \boldsymbol{r}_{\mathbf{0}}\right) & :=\left\{\boldsymbol{x} \in \mathbb{R}^{n}| | \boldsymbol{x}-\boldsymbol{r}_{\mathbf{0}} \mid<r \text { and } r, r_{0} \in \mathbb{Q}\right\} \tag{10}
\end{align*}
$$

Since the neighborhood is an open set, we can construct around an arbitrary point p_{0} a ball $B\left(\boldsymbol{r}, \boldsymbol{p}_{\mathbf{0}}\right) \subset V$. Inside this ball, we can produce at a set of balls $\left\{B_{Q, 0}\right\}$ with rational center and radius. Picking one of these balls that includes $r_{0}{ }^{2}$ means we have constructed a ball with rational center and radius, which is inside the neighborhood V and contains p_{0}. Doing this for all the uncountable points $p_{n} \in V$ gives an uncountable union $\bigcup B_{Q, n}$ with each $B_{Q, n} \in\left\{B_{Q}\right\}$. By definition this union must be contained within V and contain all points of V, so it is clear that $\bigcup B_{Q, n}=V$. Therefore we have shown that $\left\{B_{Q}\right\}$ is a countable basis and thus that \mathbb{R}^{n} is second countable.

[^1]
[^0]: ${ }^{1}$ This definition is equivalent to (1).

[^1]: ${ }^{2}$ To directly prove that this is possible, one could imagine doing a construction like in Section 2 along a diameter of the ball, and therefore argue that since this construction covers the whole line at least one ball must cover p_{0}.

