On Quotient Groups

Special Mathematics Lecture
Magnus B. Lyngby (612206006)

October 28, 2022

Contents

1 Introduction 1
2 Proof of Proposition 1.2.9 1
2.1 Proof that a necessary and sufficient condition for a normal subgroup is equality of left, right cosets 1
2.2 Proof that the quotient group is well-defined 2
2.3 Showing the size of quotient groups for finite groups 2

1 Introduction

In this report I will prove Proposition 1.2.9. [1], as well as show that $\left|\frac{G}{G_{0}}\right|=\frac{|G|}{\left|G_{0}\right|}$ for finite groups. The proof will be broken up into three sections, one for each sub-statement of Proposition 1.2.9.

2 Proof of Proposition 1.2.9

2.1 Proof that a necessary and sufficient condition for a normal subgroup is equality of left, right cosets

We want to prove:

$$
\begin{equation*}
G_{0} \text { is a normal subgroup of } G \Longleftrightarrow G_{0}[c]=[c]_{G_{0}} \forall c \in G \tag{1}
\end{equation*}
$$

By using the definition of a normal subgroup:

$$
\begin{align*}
G_{0} & =c G_{0} c^{-1} \forall c \in G \text { Multiply both sides on the right by c } \tag{2}\\
\Longleftrightarrow G_{0} c & =c G_{0} \forall c \in G \text { Use the definition of left and right cosets } \tag{3}\\
\Longleftrightarrow[c]_{G_{0}} & =G_{0}[c] \forall c \in G \tag{4}
\end{align*}
$$

By following the logic backwards we see that we have proved the statement.

2.2 Proof that the quotient group is well-defined

First I must prove that the product $[a]_{G_{0}}[b]_{G_{0}}:=[a b]_{G_{0}}$ is well-defined for a normal subgroup. The product is well-defined if $\forall x \in[a]_{G_{0}}$ and $\forall y \in[b]_{G_{0}}$ we have $x y \in[a b]_{G_{0}}$. In words, the representative for the equivalence class does not matter. Assuming we arbitrarily pick x, y belonging to their respective classes we know:

$$
\begin{align*}
{[x]_{G_{0}} } & =[a]_{G_{0}} \tag{5}\\
{[x]_{G_{0}} } & =[a]_{G_{0}} \tag{6}
\end{align*}
$$

This together with (3) lets us prove that the product is well-defined:

$$
\begin{align*}
{[x y]_{G_{0}} } & =\left(G_{0} x\right) y=[x]_{G_{0}} y=[a]_{G_{0}} y=G_{0} a y=a\left(G_{0} y\right) \\
& =a[y]_{G_{0}}=a[b]_{G_{0}}=a G_{0} b=G_{0} a b=[a b]_{G_{0}} \tag{7}
\end{align*}
$$

Which gives the desired result. Next we must show that the product defined on the equivalence classes forms a group. This is done by checking the three conditions in Def. 1.1.1.. Let $a, b, c \in G$:

$$
\begin{align*}
\left([a]_{G_{0}}[b]_{G_{0}}\right)[c]_{G_{0}} & =[a b]_{G_{0}}[c]_{G_{0}}=[a b c]_{G_{0}} \tag{8}\\
{[a]_{G_{0}}\left([b]_{G_{0}}[c]_{G_{0}}\right) } & =[a]_{G_{0}}[b c]_{G_{0}}=[a b c]_{G_{0}} \tag{9}
\end{align*}
$$

Thus the product is associative. Next observe that G_{0} is an equivalence class, simply represented as $[e]_{G_{0}}$, and it acts as the identity:

$$
\begin{align*}
{[a]_{G_{0}}[e]_{G_{0}} } & =[a e]_{G_{0}}=[a]_{G_{0}} \tag{10}\\
{[e]_{G_{0}}[a]_{G_{0}} } & =[e a]_{G_{0}}=[a]_{G_{0}} \tag{11}
\end{align*}
$$

Lastly I will show that $\left[a^{-1}\right]_{G_{0}}$ acts as an inverse to any equivalence class represented by $a \in G$:

$$
\begin{align*}
{[a]_{G_{0}}\left[a^{-1}\right]_{G_{0}} } & =\left[a a^{-1}\right]_{G_{0}}=[e]_{G_{0}}=G_{0} \tag{12}\\
{\left[a^{-1}\right]_{G_{0}}[a]_{G_{0}} } & =\left[a^{-1} a\right]_{G_{0}}=[e]_{G_{0}}=G_{0} \tag{13}
\end{align*}
$$

All this together shows that the quotient group is well-defined, and is a group.

2.3 Showing the size of quotient groups for finite groups

I want to show $\left|\frac{G}{G_{0}}\right|=\frac{|G|}{\left|G_{0}\right|}$. We know the equivalence classes define a partition of G, per definition, and we know $\left|G_{0}\right|$ is the number of elements in the identity equivalence class. I want to show that every other equivalence class also has $\left|G_{0}\right|$ elements, since then the number of equivalence classes, $\left|\frac{G}{G_{0}}\right|$ would equal $\frac{|G|}{\left|G_{0}\right|}$, which is exactly what I want to show.

Recall that we can transform from $[e]_{G_{0}}$ to $[a]_{G_{0}}$ by a, and we can transform the other way by a^{-1}. Since the transformation is invertible, it must be bijective, which means every element in $[e]_{G_{0}}$ is mapped exactly once to every element in $[a]_{G_{0}}$. Since a was arbitrarily chosen, this means every equivalence class has size $\left|G_{0}\right|$, which proves the statement.

References

[1] Austen Vic and Richard Serge. Groups and their representations. 2022.

